AD=AL0% 624

UNCLASSIFIED

NAVAI. POSTORADUATE SCHOOL MONTEREY CA
A MICROPROCESSOR D!VILOPDINT SYSTEM FOR THE ALTOS SERIES HICROC-'!TC(U)
JUN 81 S M HUSHES

@

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

L7

ADA104624

DTIC

FAFLECTE
B SEF2 31981

B

THESIS

A Microprocessor Development System
for the ALTCS Series Microcomputers

by

Stephen Michael Hughes

June 1981
L Thesis Advisor: M. L. Cotton
. “-’
4»1 Approved for public release; distribution unlimited
s
-4
Lo
4 !
.:ﬁa
e
5
N ‘ .

| m—— """'"'”"_

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

NUMN

REPORT DOCUMENTATION PAGE

Y T T
2. COVT ACCESSION NO,

READ INSTRUCTIONS
BEFORE COMPLETING FORM
. RECIPIENT'S CATALOG NUMBER

&Y

AN

y

4. TITLE (and Subtitie)

/ A Microprocessor Development System
for the ALTOS Series Microcomputers .

D4 s0Y

——

$. TYPE OF REPOART & PERIOD COVERED
ci Master's Thesis

June 1981
6. PRERAPOAMING ORG. REPORT NUNBER

7. AUTHORC(e)
\

Stephen Michael/Hughes

. CONTRACY OR GRANY NUMBERTS) ‘

P r—————————nte—————
9. PERFORMING ORGANIZATION NAME AND ADORESE

Naval Postgraduate School
Monterey, California 93940

N ———————
10. PROGRAM ELEMENT. PRQJECT, TASK
AREA & WORK UNIT NUMBERS

COMNTROLLING OFFICE NAME AND ADORELS

Naval Postgraduate School
Monterey, California 939u0

T75. wuseer oF Faces

12. REPQAT QATE
J 1981

lu9

~

A”'

T3 MONITORING AGENCY NAME & ADORESS(I! ditterant lrom Contrelliing Office)

.
3

18. SECURITY CLASS. (of thie rdpart)

i8e. OECL Alll‘ﬂCATION; COWNGRADING

SCHEDUL

Approved for public release;

. DISTRIBUTION STATEMENT (of thie Repert)

distribution unlimited

7.

OiISTRIGUTION STATEMENT (of the abatract entered in Bleck 20, If ditteren: fremm Repeor)

. SUPPLEMENTARY NOTES

Microprocessor Development System
ALTQOS Microcomputer

PRO~LOG STD bus

CP/M, MP/M

KEY WORDS (Continue on reverse side !l necessary and identify by block number)

processor development system (MDS).

ABSTRACYT (Centinue an reverse side If nocessary and identily by dloesk mamber)
An ALTOS series microcomputer is being used as the host computer in a micro-
The MDS hardware, consisting of the

PRO~-LOG STD bus, a Z88 cpu card, 2K bytes EPROM and 36K bytes random access
memory, is controlled by the host via a single serial I/O port.
provides the capability to develop and test both sof*ware and hardware in
the combined CP/M (MP/M) and MDS environments.

The system

ronm

Do 1JANTY
(Page 1)

1473

E0ITION OF | NOV $3 18 OBSOLETE
$/M 0102-014~6601 ! 1

. P

P ’, 4

’ -
SECURITY CLASRIPICATION OF THIS PAGE (When Deta Entered)

Approved ¢or public release; distridbution unlimited

A Microprocesscr Developmernt System
tor the ALTOS Series Microcomputers

by

Stepnen Micnael Hughres
Lieutenant, United States Navy
B.S., Unit=2d States Naval Academy, 1975

Sutmittea in partial fulitriliment of tne
requirements tor the deeree of

MASTER OF SCIENCE IN XLZCTRICAL ENGINEERING

trom tne

NAVAL POSTGRADUATE SCHOOL
Jupe 19821

Autnor: 3@;&_/&(_-_#71.&4_‘ _______________

Approved by: _______ Melebtts L. Lol

Tnesis Advisor

RL_-_?%_%Q_{&___a ED S

ond EReader

RP2 S

AUH:J Cnairman, Department o‘ctfjnxxlpaL Ensineering
Lltlin I fette,
_______ Dean of Sclﬂnce and Engineering

ABSTRACT

An ALTOS series mnicrocomputer is teing used as tne
nost computer in a microprocessor development system (MDS).
Tne MDS nardware, consistineg of tone PRO-LOG STD bpus, a 229
cpu card, 2k bdbytes £PROM and 36X bytes random access memory,
is controllea by tne nost via a single serial I/0 port. Tae
system provides tn€ capdatiility te deveiop &nd test totn

software and zardiware in tne combdined CP/M (MP/M) anda MDS

eavironments.

r—

Accession For
NTIS GRA&I
A\ ™

e
DT T

Urimriseaiines

II.

I11.

Iv.

TABLE OF CONTENTS

INTRODUCTION

THE MICROPROCESSOR LEVELOPMENT SYSTEM -

A. HARDWARE CCNSITERATIONS

B. SOFTWARE CONSILERATIONS

C. THE SYSTEM CONTROL SOFTWARE
1. The HOST Control Softwar
2. The MLS Onboard Monitor

SYSTEM IMPLEMENTATION ANL CUSTCM

e ————————————————

IZATION ———~omeem

A. PUTTING IT ALL TOGETHER -

- - — o

B. CUSTOMIZATION -

C. SYSTEM LIMITATIONS
CONCLUSIONS AND RECOMMENDATIONS

S = Y — . - - S

A. FUTURE HARIWARE ---—==--=—-
3. FUTURE SOFTWARE - - _—

APPENTIX A: AMLS USERS GUILE -

APPENLCIX B: HOST ANL MIS FLOW CHARTS

APPENLIX C: AMLS HOST CONTROL SOFTWAR
APPENLIX L: MLS MONITOR SOFTWARE LIST

APPENDIX E: MDS MEMORY TEST PROGRAM L

APPENLIX F: SAMPLE MENU LISTING

FOR USER OPTIONS -
E LISTING —==————e

| § [——

ISTING —-—==-===——mv

APPENDIX G: SAMPLE BASIC INSTRUCTION

APPENTIX H: SAMPLE INPUT PARAMETER FO

LISTING =—=m=mmmmwm

EMAT LISTING =~=~-

BIBLIOGRAPHY - -—- ———

INITIAL CISTRIBUTION LIST

- ot e — —— g g =

- - o

14
14
15
22
24
24
27
31

36
37
38
61
71
120
129
144
145
146
148
148

LIST OF FIGURES

1. PRO-LOG STT BUS PIN LEFINITIONS -

2. HOST CONTROL PROGRAM -~ - —————
3. RS-232C PIN TEFINITIONS ANL SYSTEM /0 SETUP =~————-

4. INTEL HEX FILE RECCRI FORMAT - —————

: syeme

R

I. INTRODUCTION

The Naval Postgraduate Scnool Electrical Eneineering
Department’s microcomputer/microprocessor development
laporatory, presently being used for microprocessor
application courses 3% the bdeginning and intermediate
levels, otfers two metnods of applications developnent. Cre
method uses the Tektronix &2¢2 development system. Wnhile
thls system 1s very capable for hnardware applicaticns
development, it is limitea in available sortware, provides
for use by only a single user at a time, and takes a
considerable amount of time to learn to use properly. Also,
because of tha hieh cost ot additional in-circuit emulation
modules for different processors, the system nas been slow
to expand, On the otrher end o0f the spectrum, tne ALTOS
series single and multi-user microcomputsr systems nprovide
extremely =200l support for software development due to tne
vast variety of CP/M Dbased software currently avallablie.
These systems nave & much lower per-user cost and provide a
woryg enviroament more enhancire to individual
productiveness, Tne primary disadvantage, however, is tae
lack ot support for hardware development, without havineg <o
et laside tne computers and building some type of kludged

{ntertace whose reliability is often haphazard at best.

Thne design ard implementation of a relatively low cost,

low complexity, nighly tlexible microprocessor development

‘ system, combining many of tze good features of each ot these

metnods is tne topic of furtner discussion in tnis thesis,

2 A2 IR M

et

II. THE MICROPROCESSOR DEVELOPMENT SYSTEM

The bounding needs of tnis microprocessor aevelopment
system (MDS) are grouped into the four areas listed below:
The overall system cost shoula be relatively low in

contrast 10 large development systems such as the
Textronix 3942,

Tne MDS snould be ot low complexity in both software
and nardware reguirements.

Tne system snhould utilize existing software and
nardware to tae pest extent possible.

The system should be expandavie and easily
customized or recontigured t0 operate with rnumerous
other nicrocomputer systems.

The determination of these needs made the s=lection of
final requirements aimost automatic. The primary decisions
were what capablilities should te included in tnhe MDS within
the constraints of the neeas given and the time availadrie.
Typical development system components include sottwar
support for editing, assemdling and 4ebue2ine apvlications
programs ard rardware support for testing both the <coftware
and hardware in an in-circuit emulation (ICE) environment.

Because of the low complexity constraint and the 1limited
time availadble tor this project, it was deciaeda that tne ICE
component would be the area where most of the compromises

would dbe made during the system desien. To further meet tne

. o

stated needs, the decision was made to design the system for
operation as a task in the CP/M and MP/M operating systems

environment,

A. HARDWARE CONSIDERATIONS

Inttial 1ideas tor meeting the nardware needs of the MDS
included utitizineg an ALTOS microcomputer as tne control
computer for a4 separate hardware development system. The
miaimumn nardware development system would consist oY a
dedicated microprocessor, EPROMs fror an onboard monitor,
sufficient random access memory (RAM) for storare ard
execution ot fairly complex programs and & serial RS-232(C
port for interface to tne ALTOS,

Tne ALTOS computer and tne nardware dlevelopment system
together woulld form the complete microprocessor developrmert
system. For clarity, the ALTOS computer will nencefortn te
reterred to 31s the “EOST’, the hardware development System
as the “MDS’ and the overall system as tae “AMDS”, for ALTOS
Microprocessor Development Systen.

The ™MDS nardware was the subject of primary
consideration during the initial stages of system deslign,
Consideration was first given to wire~wrappineg circuits 1o

meet the stated minimum nardware requirements, but this
approach was soon recognized as bdeing pronibitive due to the

considerable time requirements involved for ¢this type of

voTrk.,

This avpproach would also contribute to a iess reiiadle ara
less flexible system for long term use and future expansion.
Thus, the decision was made to use a standaraized bdus
system winicn 23s achieved industry acceptance in both proven
applications and 1n manufacturer support and wnicn would
ofrer a2 reasonable initial system «cost (under S1%5¢@.g¢).
Wnile several manufacturers offer sucha a system, tne PRO-LOG
Corporation STD bus was cnosen over others primarily due to
i1ts immediate avallability and local manufacturer support.
Tne final MDS nardware configuration consists o0¢ the
following PRO-LOG components:
A 16 slot STD bdbus ard card cage with provisioas for
wire-wrapped caris.
A 2MHz 288 processor card witn onbtoard provisions
for up to 4K bytes of RAM and up to 8K bytes ot 2716
EPROM,
Two 15K byte static memory cards.
A dual USART card consistine of two *ully
independient, asyncaronous RS-232C serial ports with
provision for one of these to pe configured as a 28mA

loop for TTY applications.

Several blank utility cards ¢for wire-wranped
applications.

A DC power supply providing +5V/19A and %12V/1A.

The only nardware modifrication necessary to get this
system operable was tne additionrn of a manual reset switen

vaich is only 2 momentary ground t0 thae push-button reset

19

] 4 g e = [T LI POV

pin (48) on the STD bus. The STD tus pin derinitions are

2iven in Figure 1.

)
H
=

Awwwwwwwwwwl\)l\)l\)ml\)l\)l\)mmmHHHHHI—‘F—‘HHP
OtDG)\]O’)U’lLOJl\)HOLO(D\)O’)U’IJ&(A)I\)HOLDCO\IQU‘&OONHO(O(D\IO')U\J)(DNP

MNEMONIC

+5VDC
+5VDC
GND
GND
VBB#1
VBB#2
D3
D7
D2
D6
D1
DS
DO
D4
A7
AlS
A8
Al4
A5
Al3
Ad
Al2
A3
All
A2
Al0
Al
A9
AO
A8
WR*
RD*
IORQ*
MEMRO*
IOEXP
MEMEX
REFRESH*
MCSYNC*
STATUS 1*
STATUS O*

DESCRIPTION

Logic Power

Logic Power

Logic Ground

Logic Ground

Logic Bias #1 (=5V)
Logic Bias #2 (=5V)
Data Bit
Data Bit
Data Bit
Data Bit
Data Bit
Data Bit
Data Bit
Data Bit
Address Line 7

Address Line 15
Address Line 6

Address Line 14
Address Line 5

Address Line 13
Address Line 4

Address Line 12
Address Line 3

Address Line 11
Address Line 2

Address Line 10
Address Line 1

Address Line 9

Address Line O

Address Line 8

Write to Memory or I/O
Read Memory or I/0

I/0 Address Select
Memory Address Select
I/0 Expansion

Memory Expansion
Refresh Timing

CPU Machine Cycle Sync.
CPU Status

CPU Status

rbOUromaWw

Figure 1 - PRO-LOG STD Bus Pin Definitions

q‘

PIN MNEMONIC DESCRIPTION

41 BUSAK* Bus Acknowledge

42 BUSRQ* Bus Request

43 INTAK* Interrupt Acknowledge

44 INTRQ* Interrupt Request

45 WAITRQ* Wait Request

46 NMIRQ* Nonmaskable Interrupt

47 SYSRESET* System Reset

48 PBRESET* Push-Button Reset

49 CLOCK* Clock from Processor
F 50 CNTRL* AUX Timing

51 PCO Priority Chain Qut

52 PCI Priority Chain In

53 AUX GND AUX Ground

54 AUX GND AUX Ground

55 AUX +V AUX Positive (+12VDC)

56 AUX -V AUX Negative (-12VDC)

*Low~-level active indicator

Figure 1 (cont'd)

Sagt

e con s - ——

B. SOFTWARE CONSIDERATIONS

The editing, assembling and debugging software needs for
the AMDS were easily fullfilled by deciding to utilize CPF/VM
based software. The basic CP/M and MP/M operating systems
provide software for each of these needs, therefore
simplifying the overall system design considerabdly.
Additionally, the existence of a vast selection of CP/M
based software products on the commercial market greatly
enhances the growth oprospects for software applications
development with this system. An added feature of thne
decision to wuse CP/M based <software 1is the ability tc
develop and test software on any microcomputer using the
CP/M operating system. This feature alone is one of the most
advantageous aspects of the AMIS.

With these —capabilitia2s accounted for, the remaining
software considerations were those of determining the
software requirements for the HOST to control the ML5 and
deciding upon those capadilities which should be included in

the control software package.

C. THE SYSTEM CONTROL SOFTWARE

The system control software needs were divided into two
areas: 1) the control program resident in the 9037, to te
used in exercising overall control of both the ALTOS and the
MDS and; 2) the MDS omboard monitoer program, to be used for
communications with the HOST and for interpretiang and

executing H0ST commands.

14

1. The HOST Control Software

The primary functions of the AMLS <control program
resident in the HOST are to communicate with the system user
and to exerclise positive control of the MIS. It is intended
to be the workhorse of the system, providing numerocus
routines to simplify the work required of the MILS.

A study of the monitor and control programs for
typlcal development systems helped in identifying the
following software needs as the most essential wuser
requirements for implementation into the HOST control

program:

A routine to download data from disk to MLS memory.

A routine to upload data from MDS memory and store
it on disk.

A routine for examining and modifying M™MIS merory
contents.

A routine for filling specified blocks of MDS memory
with a specific byte of data for memory initialization.

A routine to locate a specific data sequence in MDS
memory.

A routine to dump the contents of MLS memory to a
CRT or printer in a format conducive to user
interpretation.
A routine to initiate the execution of a program
previously placed inte MIS memory.
Each of these routines are implemented in the HKOST
control program, Additional routines provide: 1) the ability

to perform additions and subtractions of two hexadecimal

numbers and display the results, 2) a routine for continuous
modification of MLS memory without an intermediate
examination of each locaticn, and 3) routines for onliae
user self-help and system use instructions.

The primary ccnsideration in the design of the HOST
control program was in making it user oriented. Thus,
considerable effort was made to make toe system easy %o
learn and to provide positive user feedbdback in all modes of
operation. Examples of this include the implementation of a
menu displaying all user options, detailed imstructions for
required 4input formats <(available at any time), and fully
explanatory error displays. Operation of the system {s
designed so that the wuser should never be in doudt as to
what is going or what is required of him,

The control program flow is straightforward. Program
parameters are first initlalized followed by displaying the
menu of options on the user’s console and prompting him for
input of the desired option. The input is then {nterpreted
and a branch 1is made to the routine chosen, whereupon the
user is again prompted for additional input unique to that
option. Upon completion of the option, at the command of tke
user or after a trap to certain errors, the program returns
control to the menu routine to await further user commands.
This flow is easier visualized, as shown in Figure 2.

The flow of the individuval option subroutines is

equally simple. Upon entering each routine, again various

parameters are initialized and the wuser is prompted for
initial input. When the proper 1input is received, the
routine takes the necessary actions to perform tke task,
including communications with the MDS, if applicable, and
prompting the user for additional inputs as required. On
completion of the option, control returns to the meun

routine.

17 i

G
o

INITIALIZE
PARAMETERS
DISPLAY
MENU
GET USER'S
SELECTION
BRANCH TO
SELECTED
OPTION
<:OPTION >
OPTION COMPLETED
or
ERROR
or
USER HALT

Figure 2 - HOST Control Program Flowchart

All wuser input is <checked for validity including

proper syntax, correct number and placement of parameter
delimiters and for valid hexadecimal digits where
applicable, Additionally, the input 1is checked for wuser
requests for help or to terminate the option and r=turn to
the menu. TData iaput and output formats were kept as
compatible as possible with those in the CP/M dyramic
debugging tool (TLLT). All 4input is terminated with a
carriage return or a line feed and input line editing

functions conform to the rules set forth in the CP/M and

MP/M users manuals. By maintaining this degree o¢f
compatibility the learning cycle of the AMLS user should be
lessened considerably.

System errors are divided into two categories; those
due to faulty wuser 1inputs and those due to disk I/0
operations, Lepending on the particular error, errors may
take one of three courses of action. They may return
directly to the menu, they may restart the option 1{in
progress when the error occurred or they may simply return
to the point where the error occurred and await user
provided corrective measures., More details are provided in
the AMDS user’s guide.

The final area of the BOST control program requiring

discussion i{s that of the routines and associated protocols
used for intercommunication between the HOST and the MIS.

Because the MIS may not always utilize a fast processor such

as the 280 and since the MILS is provided with the ability to

execute user programs in real time, it was conceivable that
the MIS response time to the HOST could be considerably siow
in some instances. This also brings up the possivility of
lost data if the BOST is transmitting faster than the MDS
can service its serial I/0 port. A final problem ian such an
asynchronous setup is what the data sent is intended for, be
it a command or some type of processable data.

In order to alleviate the lost data problem and to
lessen the response time to the HOST, several assumptions
were made in the communicatlions software design. The primary
assumption is that the HOST nas communications priority at
all times. From this assumption tke followiang protocols were
established and implemented. A type of software handshaking
between HOST and MDS is provided for each character seat by
either device. Some experimentation was done with the use of
packets of characters greater than one, but some data lcss
was experienced when either the HCST or MLS was busy with
other tasks besides I/0. Though time prohidited further
experimentation in this area, it is felt that some type of
hardware initiated control signals would be necessary to
increase transmission/reception reliability inm a packet
communications mode for this system.

The protocol thus implemented follows several rules.
For each piece of data to be transmitted two bytes of data

are actually required. The first byte indicates the type of

20

data to follow. Types include command data, pure data, and
status data. Each type is assigned a hexadecimal equivalent
as follows:
@558 1indicates that the next byte to be transmitted
will be a command

QFFH indicates that the next byte to be transmitted
will be pure data

@eH 1indicates that the next byte to be transmitted
will be status data (the only currently implemented
status data 1is ¢@H, meaning the sender is at some point
in the execution of 1ts program where it awaiting input
from the other device in order to proceed)

As an example, when the user wants to examine an MIS memory
location the HOST first sends the data sequence:

@55d , 958H (@5@3 i1s the ASCII hexadecimal code for
‘X", the Examine Command)

After receipt and display of tre data in MLS memory, the
user wants to change it to say, 93FH, thus the HOST would
send the sequence: QFFY , 03r¥{ .

In addition to tkis rule, recall that a software
handshake 1s provided for -every character sent. As each
character is received, the receiving system returns an
acknowledgement byte of C11H, the ASCII hexadecimal code for
XON, meaning the character has been received and further
transmissions may proceed, At the same time, the sender 1is
awaiting this acknowledgement bvefore proceeding with further
transmissions or continuing on to other tasks. This
handshaking overhead seems wunrealistically Lrigh at first

8lance, but it is negligible to the user for most types of

21

applications envisioned for this system and 1t provides a
high degree of confidence in the communications setup.
Perhaps the only time the communications throughput would be
degraded, in the user”’s eyes, would be when an application
program might require nearly continuous data transmissions
for & lengthy period of time. A way around this particular
situation is discussed in the section on system
implementation.

To improve MLS response to HOST transmissions, the
MLS checks for receipt of a HOST transmission prior to every
output to the HOST. If the HOST has sent information,

typically a new command, the MIS halts whatever it was doing

and processes the new data.

Further details concerning the HOST control program
are discussed 1ia the system user’s guide and all routines
are well documented in the source code 1listings and flow

diagrams in the appendices,.

2. The MLS Onboard Monitor

Because the HOST control program was designed to do
most of the the work required of the AMDS, the MDS monitor
software was much easier to develop.

The monitor software essentially consists of a
command/data interpreter, a set of complementary routines
for each of the HOST initiated MIS options, and a similar

set of I/0 routines for communications with the HOST. The

22

program flow is basically the same as described for the HOST
control program, with the exception that there is no direct
input from the user., The MIS monitor does not Lave any error
routines since all system error detection is built into the
HOST control program. If for any reason the monitor does not
understand the HOST transmissions it simply waits until
something is sent that it does recognize and then proceeds.
Though it is unlikely tkhat the system will ge!t hung up in a
loop during normal EOST to MDS communications, if it should

occur, either an ESCape sequeance from the HOST or a manual

reset of the MDS will terminate the 1loop. The only
foreseeable circumstances in which this might occur are when
a user program, executing in MIS memory, attempts to obtain

information from the HCST when the HCST 1s not expecting

such a request.
The monitor {s written for automatic startup after

either a system power-on reset or a manual reset. All MIS
serial I/0 ports are 1initlalized ¢to communicate at $56€¢C
baud. Routines for user program /0 with the HOST console
and for return to the MDS mounitor are also provided via

simple user calls, as explained in the user’s guide.

Again, more detailed information may be best gleened

from the AMIS user’s guide, the flow diagrams aand

accompanyling source code listings in the appendices.

23

I .

III. SYSTEM IMPLEMENTATION AND CUSTOMIZATION
 J

‘.’I’he AMLES 1s a modular system with respect to both
software and hardware. Though this thesis 1is concerned
! primarily with implementation of the system as already
stated, with an ALTOS microcomputer and the PRO-LCS STC
hardware, the design is intended to be usadle on any otker
CP/M or MP/M based system with only a few software changes
and minor additional hardware interface reguirements (teyond

the MIDS hardware needs, naturally).

A. PUTTING IT ALL TOGETHER

Implementation of the ICST control program is simply a

matter of loading and executing the program via the nzaormal
CP/M method of typing 1in the name of the object file, in

this case ‘AMDS”, followed by a carriage return or Lline

feed.

Implementing the MIS system, while not especially
taxing, does require the use of a PROM programmer to 1load

the monitor software into EPROM. Once this is accemplished,

f and the EPROMs are installed, the system implementation is

nearly complete. All that remains is coanecting the systems

together, turning on the power ani the reset is automatic.
This particular development system is coupled together

via a standard RS-232C connector cable set with a 25-pin,

24

DB-25P, male ‘D connector on the HOST end and a 26-pin
female Amphenol connector on the MILS end. Only the signal
ground, transmit and receive signals are necessary and other
RS~-232C signals are ignored in this implementation. (The
standard RS-232C pin definitions are shown in Figure 3.) The
BCST end of the connector 1s plugged into the auriliary

serial port on the ALTCS multi~user system and the MIS end

is connected to the ‘A° channel socket on the dual USART
card, Additionally, 1t should be ensured that the “&°
channel 1is jumpered for LITE (Lata Terminal Equipment)
operation, as explained in the dual USART card documentation
listed in the bibdliography.

These procedures are all that is necessary to implement

and use the basic system.

o i

s

* ALTOS MDS

PGND 1 NC fvq 1 Protective Ground
RXD 2 2 Transmitted Data (TXD)
TXD 3 3 Received Data (RXD)
RTS 4 4 Reguest to send

CTS 5 ;;>) Clear to send

DSR 6 6 Data Set Ready
SGND 7 7 Signal Ground

Received Line
RLSD 8 /| NC |} 8 Signal Detect
DTR 20 20 Data Terminal Ready

* NC ~ No Connection

Figure 3 - RS-232C Pin Cefinitions and
System I/0 Setup

26

B. CUSTOMIZATION

The primary areas of customization of the AMDS are those
concerning the use of different processors in the MIS and
the use of different serial interfaces.

At present the PRO-LCG Corporation STL bus supports the
8080, 5985, 188, 78PA and the 6800 series microrrocesscrs.
The current implementation uses the Z8¢ with onboard IFROM
and RAM. The ROM and RAM address areas may be jumpered to
either the lower (as done here) or the upper 168 of address
space, In order to use the monitor ia the upper 16X of
address space would require a hardware addition capadle of
taking control of the address lines, at power-on reset or
manual reset, and forcing the next execution address to
coincide with the first address of the monitor. Otherwise,
the 280 (and 82€@/8085) processors normally execute location
Poo¢H after a reset sequence. If no monitor program is
located at this 1location the ©processor executes gartage
until a HALT instruction is encountered. An implementation
of the monitor in high memory, however, is an idea to be
well considered for future versions of the AMIS, as 1t would
provide better compatidbility with the page zero I/C mapping
scheme used by the 6€08 microprocessor. As an additional
benefit, {t would lessen some of the software 1limitations
currently imposed by the current configuration. These

limitations are discussed in a separate section of this

paper.

As to the wuse of different serial I/0 interfaces,
several hardware additions may be necessary on tke ALTOS
computers. If the system is used with the single-user ALTOS
computers, the options are to use the serial port currently
used by the printer or to build an additional serial port
into the computer via the use of its internal bus connector.
If using the multi-user system, two AMILS systems could be
supported simultaneously Dby simply using two of the serial
ports currently used for consoles. To support four complete
AMDS systems would require the addition of three more serial
ports in a manner similar to that discussed for the siigle
user system.

The changes in serial port usage would require a few
minor changes {in the HOST control program. If ZILCG SIO
devices are used, as presently installed in the ALTOS series
computers, the software modification reduces to simply
changing the status (MSTATPT) and data (MCATAPT) port
designations in the “equates”’ (EQU statements) section at
the beginning of the HOST conirol software source code and
then reassembling the code for the new serial ports. 1If
serial communication chips other than the SIO are used, the
HOST control routines ML3TAT, MLSIN, and MISOUT would have
to be modified to operate with tke particular chip chosen.

On the MDS side of the system, the customization process
for software changes of serial ports is very similar to that

of the HQOST. Using additional INTEL &251 USARTs would

28

N

necessitate only changes to serial port equates for CHASTAT
and CHADATA in the MDS monitor source code, followed by
reassembly and reprogramming of tke EPROMs. Use of serial
devices other than the 8251, would require appropriate
changes to the MLS routines HOSTAT, HOSTIN, and HOSTCUT.

Beyond these hardware oriented customization procedures,
provisions have been included for the addition of more vuser
options and error ©processes in the HOST control software.
Each of these areas use “jump’ tables to vector to the
option or error routine selected. To add am optiom to tkhe
menu, the new option routines would be added to the dody of
the current source code, a JMP xxxx (xxxx is the option
label) instruction would be added to the menu jump table and
the menu display would be modified appropriately in the
message storage section of the source code. The insertior of
additional error codes 1s ldentical, except that the jump
instructions are inserted in the error jump tatle.

One further cocmment on the addition of wuser ocptions
concerns the method of decoding the option selected. Menu
options are identified by an assigned alphadbetic <character
from A through Z (current options go only tkrough the letter
N). The ASCII code for each option is modified for use with
the jump table in the following manner. The ASCII <code s
first ‘anded” with the data 91Fd. This removes all ASCII
biasing and leaves only the hexadecimal equivaleats of the

pumbers 1 through 26, corresponding to the letters A to 2.

b s

These numbers are then used to find the appropriate vector
from the jump table, as further explained in the source
documentation. Thus the provision for twelve more options, O
through Z, is included in tre current version of the HOST
control software. If these options are added, simple changes
are also required to the equates for MAXCHCE, the highest
option letter in use, and for NEHSTCMI, the current number of
‘host only” commands.

A coansideration to keep in mind whem editing the HdOST
software is the fact that it i{s currently a 62X byte file
and thus larger than the index table capacity of the TEL
text editor wused widely at the Naval Postgraduate 5School.
For this reason, the source code is broken into two files:
AMISP1.A3M containing the primary option routinaes, and
AMISP2.ASM containing the utility and support routines and
message and data storage definition areas. 2rior o
assembly, the files are concatenated via the use of the lr/V™

Peripheral Interchange Program (PIP) as follows:

PIP AMDS.ASM=AMDSP1.ASM,AMLSF2.ASM
The file AMIPS.ASM is then assembled using whatever assembaler
is desired.

MIS monitor software customization 1is at least as
simple, 1if not easier than that for the HOST. Commands are
decoded via the simple mechanism of comparing the cormanu to

a set of known commands and then Jumping to the option

30

routines selected. The only additional source code changes
which might be épplicable to the MIS would e a change of
the assembly origin (ORG statements) addresses if the
monitor is to bYe moved 1into upper memory as mentioned

previously.

C. SYSTEM LIMITATIONS

This system, as with many other well designed systems,
also has its limitations. Some of these have already bteen
alluded to in previous sections and will now be discussed in
more depth.

The current MDS configuration, with the 1lower 16X
address space reserved for the mounitor ROM and RAM, Iimposes
several notable limitations on the use of the AMDS. Besildes
the page zero I/C mapping incompatibility between the €860
and Z8Q, which has already been pointed out, tte inability
to use this address space for user program execution places
a restriction on the types of CPF/M based software which ray
be downloaded and executed in tne MIS memory.

CP/M’s executable object files, designmated as “.COM~
files, are created with the implied inteat of loading and
initiating the execution of these files from location 01¢@d.
Since this location is withian the reserved area in the MIS,
such “.COM” filles cannot be downloaded and executed in MIS

memory. Unfortunately, most CP/M software on the commercial

market is distributed in tkis format.

———

The restriction thus imposed is that only disk files in
the INTEL Hex Format (see Figure 4) or in a page relocatable
format may be downloaded and executed in MDS memory. Thkis {is
because these formats are not dependent wupon any address

restrictions ard are executable in whatever address space

for which they are assembled.

R

RH

RL LA RT DATA CK

RL -

RT =

DATA

CK -

RECORD HEADER: AN ASCII COLON (3A HEX)
SIGNALS THE START OF EACH RECORD.

RECORD LENGTH: TWO ASCII HEX CHARACTERS GIVE
THE RECORD LENGTH (THE NUMBER OF 8-BIT DATA
BYTES IN THE RECORD). END OF FILE IS INDICATED ‘
BY A ZERO RECORD LENGTH. (10 HEX IS MAX. RL)

LOAD ADDRESS: FOUR ASCII HEX CHARACTERS GIVE
THE ADDRESS WHERE THE FIRST DATA BYTE OF THE
RECORD IS LOCATED.

RECORD TYPE: THE RECORD TYPE IS ALWAYS 0O
EXCEPT FOR THE LAST RECORD OF AUTOSTART FILES,
WHERE IT IS 0O1.

- TWO ASCII HEX CHARACTERS REPRESENT EACH
8-BIT DATA BYTE.

CHECKSUM: TWO ASCII HEX CHARACTERS GIVE THE
NEGATIVE SUM OF ALL PREVIOUS BYTES IN THE
RECORD, EXCEPT FOR THE COLON, THE SUM OF ALL
THESE BYTES PLUS THE CHECKSUM EQUALS ZERO.

Figure 4 - INTEL HEX File Record Format

The free address space of the present MIS, 40025 to
@BFFFH, 1is therefore sufficient for the needs of these file
types. As mentioned, most distributed software does 210t come
in these formats, For wuse of the MIS 1im Dbeginner and
intermediate 1level course work, however, this restricticn
should not bYe a dominant disadvantage 1ian applicatioans
development and in gaining an 4{insight i{into the use of
microprocessors.

Because of the time constraints imposed, as well as tkis
student’s lack of familiarity with page relocatable file
formats, only the use of type °“.FEX’ files are supporied for
upload and download operations in the current version of the
AMDS.

Other 1limitations of the system are: the lack of
breakpoint setting and cpv register examination facilities
in the MLS; the lack of a facility for moving blocks of MCS
memory; the 1inability to operate the MIS in a true
in-circuit emulation mode; the current limitation of having
only a single oprocessor and the inability to operate
multiple ©processors on the MDS bus; and the limitations
already discussed concerning communications protocols.

Most of these limitations are only temporary, with the
possible exception of obtaining true in-circuit emulation.
The high communications overhead of the HOST to MLS

interface can be avoided by user programs in the MD3 memcry

34

simply by wutilizing a separate console and the additional
MDS serial port when the need for high speed data traansfer

arises.

35

Iv, CONCLUSIONS ANL RECOMMENTATIONS

The original needs stated for the microprocessor
development system have been met, with the exceptions noted
as 1limiting factors. Even with these limitations imposed on
the current design, however, it is felt that a significant
tool has been added to the small, but growing Electrical
Engineering microcomputer ladboratory. The final design of
the system has left considerable room for future expansion
and improvement in both areas of software and hardware and

is thus a good vehicle for additional thesis study.

A, FUTURE HARILWARE
There are nanumerous changes and enhancements to be made
to the system 1in the bardware ar<2a. Some of these

enhancements are described below.

Implementation of hardware initiated communication
control signals to increase system response and
throughput.)

The addition of a Master/Slave cpu capability to
operate and evaluate different microprocessor types on
the same bus; this capability would have to Dde
implemented via the use of 1interrupts and the bdus
request control lines plus appropriate software.

The addition of analog to digital and digital to
analog (A/D and D/A) capability will significantly
increase the wusefullness of the system in hardware
development applications.

36

Another worthwhile improvement would be the addition
of a PROM programmer with the capability to change its
personality wunder software control in order to program
different types of PROMs.

eeees and the list goes on.

B. FUTURE SOFTWARE

Many of the immediate enhancements to the system will
probably be an outgrowth of the limitations pointed out
previously. These include making changes for the use of CP/M
*.COM” files and adding support for page relcocatable files.
These two additions alone, would tremendously improve the
potential uses of the AMDS.

Other near future additions should include facilities
for moving blocks of MDS memery and for the use of
breakpoint, single~stepping and program trace routines. Such
routines would probabdbly be best implemented as individual
files downloaded to the MILS memory. Tke routines coull then
operate as an extension of the onboard momitor. This would
also provide the flexibility to execute routines for
different processors under control of a dedicated mornitor.

The addition of software for cross assembly of source
code Dbetween various processors is another recommendation
worth careful consideration. One idea, which was considered
for inclusion in this thesis but was axed for lack of time,
is the use of macro assemblers for c¢ross “translation” of

source code. The idea would be to develop source code using

37

o T T R T R O ———r e

OSSN
—— it

the standard mnemonics of a pdrticular yprocessor and then
translate the source code to the mnemonics understood by
wpatever processor is actually available. Once this 1is
accomrplished, testing and dedugging of tae software caan de
done with availatle hardware. The code can then be
translated or cross assembled back to code for the original
processor and put to use in its intended application, all
without the wuse of a true development system for that
processor.

Finally, an area of great promise is that of systems
networking. The <rew CPNET and MPNET loose~coupled network
facilities, by DIGITAL RESEARCH Corporation, provide
numerous avenues for further study into allowing the AMIS to
skare its resources with other computer systems,.

All ¢f these improvements are feasible and cost
effective. These additions will also allow much of the
burden to be taken off the beginning program and hardware
designers. Much of the 1less 1interesting trivia normally
associated with applications development can be skipped over
and the solution to the problem can be approached in a more

efficient and structured manner.

38

e

APPENDIX A

AMLS USERS GUILE

TABLE OF CONTENTS

1. INTROLUCTION - - 49
€. HOW T0 USE THE AMDS ——=—=mcvommoecm e e e 41
3. GETTING STARTELD —— ————— 43
4, SYSTEM FUNCTIONS (USER CPTIONS) -- ——————— 44
S. INFORMATION OF GENERAL INTEREST - - 52
6. TIPS FOR PRCGRAMMING THE MIS -=--- -=—~== 54
7. SYSTEM ERRCR MESSAGES ~ - ——e——— 57
39

AMIS USERS GUILE

1. INTROLUCTION

The ALTOS Microprocessor Levelopment System (AMIS) is
designed to be used as an aid to students in beginning and
intermediate 1levels of software and hardware applications
development. The system consists of an ALTOS microcomputer,
running under the CP/M or MP/M operating systems, and a
hardware developPment and testing system ©built around the
PRO-LOG STD bus. Included 1in the current (June 1981)
hardware development system are a 2MHz 7280 cpu <card with
onboard monitor in EPROM and 4K bytes of static RAM, two 16K
byte static RAM cards and a dual UJART asynchronous KS-232C
serial I/0 card. The ALTOS and the hardware development
system are linked together via a serial I/0 chanmnel.

The ALTOS computer, hence referred to as the “HOST ,
exercises control over the hardware development system
(designated as the “MILS’) via the execution of the HOST
control program named AMIS.COM . The onboard momitor in the
MLS contains routines which complement those in the HCST
control program, though om a 1less complex scale. & more
detajled treatment of the inner workings of the AMD3 system
is available in the student thesls by LT. Stephen M. Hughes,
USN, titled "A Microprocessor Development System for the

ALTOS Series Microcomputers”.

40

R

2. HOW TO USE THE AMDS

The AMIS’ primary use is in the design and testing of
both software and hardware applications in a real time
environment, The typical steps for effective use of the

system would be as follows:

a) Using standard CP/M or MP/M software developrent

tools, such LIT7, TEL, EL, ASM and MAC, the user would
develop, test and debug (to the extent possible)
software to be used in a hardware/microprocessor

oriented application.

b) Simultaneously to step a), the wuser, or otter
members of a project team, would be designing, wire
wrapping and vperforming initial tests on the hardware,
using available test -equipment such as oscilloscopes,

digital voltmeters, etc.

c) At such time as the hardware and software are
ready tc be tested together, the AMDS would come into
use. At this point the wire wrapped circuitry would Dbde
fnoserted 1into a slot in the development Ddus, the

software would be downloaded to the MIS memory and, via

the use of the AMIS user options, the software and

hardware would be tested as a single unit.

41

d) Refinements and correction to both hardware and
software could then be made as in steps a) and b) and
step ¢) then repeated until the application operates as

intended.

The 1intent of this oprocedure, though it might appear

cumbersome, is to allow the software programmers to
conceantrate on their work using proven and tested
development aids while simultaneously allowing the hardware
designer/builders to forge ahead in their respective areas.
The lesson to be learned is the “real world® concept that
communications between such distinct but collectively
important segments of a team effort are what 1s necessary
for successful fullfillment of the project goals. These
intergroup communications require that each team carefully
plan the project 1n its initial stages of development and
that the division of responsibilities and the methods of
implementation of the project are thoroughly understood by
all members of the team. With this type of planning and
communication of ideas, the AMIS concept is tkus seen as
less cumbersome than imittally thought and actually allows
for a very flexidble working enviromment. The use of the AMLS

also relieves the hardware designers of much of the bdurden

previously placed on students to design and wire wrap threir

own cpu and memory cards.

3. GETTING STARTET

This section is intended as a quick review for those
already familiar with the use of the AMIS. Others should
carefully review the remainder of this guide prior to
attempting to use the system.

Witk software developed and tested as Yest ©possible
(naturally those software routines fully dependent upon the
hardware have not been completely tested) and with the
hardware prototype in hand, the stage is set for utilization
of the AMDS.

With the MLS power OFF (!) the prototype card is
inserted snugly into one of the wide slots of the card cage
which are speclially designed to accept wire wrapped cards.
After insuring the card is properly in place, the power |is
then switched or and the MLS reset switch is pressed. The
MLS i{s now ready for use.

Next, the AMLCS HOST control software is initiated from
the ALTOS system console bty typing ‘AMIS’, followed by a
carriage return. The HOST control program then loads 1into
memory and Ybegins execution by displaying a menu of user
options and prompts the user for a reply. At this point the

user(s) may proceed with testing using the options describved

in subseguent sections of this gulde,.

4. SYSTEM FUNCTIONS (USER OPTIONS)

The AMDS control program i{s desigaed as a menu-driven
program. This means that after each primary task is
completed, the user i{s shown a menu of options from which he
may chose his next move., Each of these options is discussed

in the remainder of tkis section of the guide.

A. SUPPRESS PRINTING MENU -
Selection of option “A” allows the experienced AMIS user
to automatically suppress the display of the menu at the
end of each option. When this is done the system status
(whetber the H0ST or MLS is in control) and reminders of
which option suppresses and which does not suppress the
menu are printed, followed by the prompt to input a menu

option.

B. TO NOT SUPPRESS PRINTING MENU -~
Opposite of option “A°, option “B” allows the wuser to
regain full menu display if he cannot remember the

option code he wishes to select.

C. BASIC INSTRUCTIONS =
Option ‘C’ displays a set of basic imstructions for use
of the AMLCS. These instructions should normally answer

the questions of most first time users without the need

to resort to this guide.

44

|

D. BEXADECIMAL ADD and SUBTRACT -

Option ‘L’ allows the user to quickly obtain the 1€ bit
hexadecimal sum and difference of two numbers. When this
option is selected, a nessage verifying the option
actually entered will be displayed, followed by a prompt
for input.

The {input expected is two hexadecimal numbers, of up to
four digits each, separated by either a comma or a space

as the following example shows:
JOLAF F3AB or DE€1AF,F3AB

The sum and difference of these two numbers are then

displayed as:
SUM = F55A [ILIFF = QED4

The user {is themn returned to the menu for selection of
another option.
(** This option has the same input format as the ‘H’

command in CIT **)

E. RETURN SYSTEM CONTROL TO HOST =~
Selection of option “E° 4is necessary only when the
system control has been passed to the MLS via a previous
command for it to ex€cute a program in its own memory.

This option then allows the user to request the MDS to

45

terminate its present action and return control to the

HOST in preparation for subsequent commands.

*% Note that this option may not bve effective {f the
program being -executed in MIS memory runs astray or
never checks for or attempts to perform I/0 with the
HOST. Tke only remedy in this situation is to manually
reset the MDS.

F. RETURN TO CP/M -

’

Selection of option “F” will termipnate use of the AMDS
and return the wuser to the CP/M (or MP/M) operating
environment. (The input of a <control C as the first
entry after any prompt will also accomplish the same

thing.)

G. COWNLOAT HEX FILE - LISK TO MIS =~

Option ‘G’ allows the user to download an INTEL Hex
format file from disk to MIS memory. Hex files are
normally generated in the course of the assembdly
process.

*% Note that only “HEX® file types are supported in this
version and the system will not accept requests for any
other types.

When this option is selected, an option verification
message 1is displayed and the user is prompted to input

the filename. The entry of the filetype ‘HEX® s

46

optional bdut acceptable. Rules for acceptable filenames
follow those set forth in CP/M documentation with the
exception that ambiguous filenames (those containing
?’s) are not accepted., Additionally, only tke currently
logged 1in disk drive will be used for disk I/D and if
the drive select code is entered with the fillename it
vill be ignored if it fails to match tkat which is

currently logged in.

After the Hex file is successfully downloaded, a message
to that effect will be displayed and the user will be

returned to the menu.

H. UPLOAT MLS MEMORY TO BEX TLISK FILE -
Cption "B’ 1is just the reverse of option “G°. Filename
input is the same, After the filename is input, the user
is prompted for the starting and ending addresses in MLS
memory from which the contents are to be saved on disk
in a “HEX’ type file. Acceptable inputs are two
hexadecimal numbers, the first ©being 1less than the

second, input in the same manner as in option ‘L”
>403C ES9F

When the upload 1s completed, the wuser will be so

informed and returned to the menu.

CO 3 AT

I. EXAMINR/SET MIS MEMORY LOCATION(S) -

’

dption ‘17 allows the user to examine and modify (set)
the contents of MDS memory. Th2 first prompt is for the
initial MIS address to be examined such as: >@BC3 . The
system then fetches the data from that lccation and

displays it as:
AECS 2A

and waits for more input after the “3A°. If the wuser
Jesir2s to change the data in that memory location, he
may then enter the new data. The system stores the new
data and automatically advaences, examines and displays
the next sequential location in MIS memory. This process
continues until a perioi is tre oaly data input.

If no modification of a memory location 1is 1lesired, a
carriage return will cause an al-wince tp the next memory
location without modifying the YIS memory.

(** This option has the sare [/0 format as the 737

command in LIT **)

J. CONTINUOUS SET OF MDS MiMORY -
Option “J° 1s similar to the examine/set option (°I7)
except that it does not exanire the MDS memory, it only
modifies it with sequential inyut data. The first dinput
requested is the starting MLS address for modifications,

i.e. >13DA . The second and subsequent prompts are for

48

’rr . T
ﬁ
|

data to ©be entered into MIS memory, sequentially
starting at the address specified. Input data may be up
to 255 characters long (including spaces and commas) for
a single line of input. If more than 255 characters are
input, the system merely issues another prompt for a
continuation line. EBach byte of data is separated bty a

space or a comma. wWaen input is completed, a period

entered after the promp: will terminate the option.

K. FILL MLS MEMORY 4I'H SPECIFIEL BYTE -

Option ‘K’ emnadles the user to fill any portion of MDS
memory with a specifie¢ byte of data. The advantage o?
this is to allow the ~+vser bYetter knowledge of the
current contents of MLS memory and to help in
identifying needed dati during memory dumps to the CRT.

The input expected afser the prompt are the start and
ending MIS addresses followed by the data to be placed

in those locations. Far example:

>8395,7FLd,24 will fill MIS memory betweea,

; ani ‘ncluding, locations 22S5d
| and 7FL@H with data 24, the

A3CII code for “*°

(** This option has the same input format as the °F°

command in LLT **)

49

L_'E::m—-'

L. LOCATE BYTE SEQUENCE IN MLS MEMORY -

”

option “‘L° allows the user to search MIS memory fcr a
sequential data secruence up to 16 bytes long. The first
input prompted fcr is the search start address followed

by an optional en” address as shown:
>0023 579A or €23

If no end address is given it will default to QFFFFE.

The next prompt is for the dbyte sequence as:
>00 03 45,94,CC up to 16 bytes

If the sequence 1is found, the starting address of the
sequence in MIS memory is displayed. If not found, an

appropriate message is also displayed.

M. TUMP MLS MEMORY LOCATION(S) TC CONSCLE -

Option “M° provides for a hnexadecimal and ASCII MI3
memory dump to the CRT. The only inputs required are the
start and optional end addresses for the dump 1in the
same format as option ‘L°. If no end address 1is
specified it defaults to the start address + 256.

(** The dump I/0 format is the same as that for tke L~
command in TLT **)

If the user wishes to continue the dump after the

initial dump completes, he may type in the letter T’ t¢

5¢

i

R N et o kit e i AR e ke, o ek

dump the next 256 byte ©block. Any other input will

return the user to the menu.

** Note that unlike the LLT dump command, the only way

to abort a memory dump is by pressing the ESCape key.

N. EXECUTE MLS MEMORY FKOM A SPECIFIEL LOCATION -
Option “N” allows the user to pass system control to the
MLS and 1let it execute a program in its memory. User
input required is the MLS start address of the ©progranm
to be executed. After the address is input, the user is
asked whether or not the program to be executed {imn MIS
memory will be sending data to the d0ST console for
display. If the answer is no, then the user is returned
to the menu. IF the answer is yes, then the HCST system
loops waiting for data to display, until one of the

conditions mentioned below is met.

*% Note that when this option is selected, the options F
through N are disabled until the MLS returns coatrol to
the HOST; when the ‘E” option is selected; or when the

MIS system is manually reset.

*% For further discussion on the proper use of this

option, see the section on “TIPS FCR MLS FROGRAMMING®.

51

SO A Pt e kil o aher

|

4

7 T
|
|

S.

INFORMATION OF GENERAL INTEREST

a) Tke prompt for all user input is “>7 .,

b) All inputs may be in either upper or lower case

alphabetics,

¢) All input is terminated with either a carriage

return or a line feed.

d) All address and data inputs are expected to be in
hexadecimal notation., Address inputs contain from 1 to 4

hex digits and data inputs contain 1 or 2 hex digits.

e) When inputting addresses ani data, mistakes may
be corrected in two ways: 1) by using the RUFQUT kxey or
backspace keys to delete dinput or 2) by simply
continuing to input the hex characters until the correct
ones 4are input. For addresses, the program always takes
the last four or less hex digits input and for data, the
last two or less digits entered. At least one digit must

be entered for every required input parameter.

£f) A question mark “?° entered during input will
cause the required input formats for @ach option to be
displayed. When the display is corpleted, the currently

selected option is restarted.

32

g) If the ESCape key is entered as input, the option
is immediately terminated and the user is returned to

the menu.

h) The MILS is automatically reset at power—on dut it

is generally a good idea to manually reset it anyway.

1) The MDS to HOST serial 1I/0 port and the
additional I/0 port in the MILS are both initialized at

every reset to operate at & 9602 baud rate.

53

€. TIPS FOR PROGRAMMING THE MDS

h———m

a) If a program requires considerable communications
with the user, the best terminal response will be gzained
by using a separate CRT attached to the spare serial I/C
port in the MIS. This port may be reprogrammed for a
different baud rate if necessary (see the PRO-10G dual
UART documentation for detailed steps for programming

channel B).

b) If the wuser does not wisk to fool with
programming the MDS channel B USART, but still ©bas the
need for <console [/0, his program may use the routines
built into the monitor specifically for this purpose. In
a manner similar to the BIOS calls wused by CP/M, the
user program may call location @@05H irn the monitor for
console I/0 using the HOST console., The conventions for

these calls is as follows:

- for input from the HOST console the user program

should call MIS address @@05H with the function code €1H
in register C; the character from the <console will be

returned in the Accumulator

~ for output to the console, a call is made to MIS
address @@0@58 with the function code 924 in register C,

and the character for output in the Accumulator

54

- to merely check to see if input bas been received
from the HOST, address @0€5H is called with function
code @3H in register C 7 if no character is waiting the

accumulator will ©be returned = @@OH, otherwise A = CFFB

meaning input has been received

- if a call is made to MDS address @955 wit:k a
function <code in register C other then @1H, €2H or 273H,
no I/0 will take place and the ¢ register will ©te

returned with OFFH

¥# Two points should be remembered when using the
HOST console for I/0C:

1) the data returned from the I/2 port is a full
eight ©bits as received with no stripping of the iaigh
order bit for ASCII data

2) when the console is to be used for user program
I/0, be sure to answer yes to the query about console

1/0 when option ‘N’ is selected

¢) if no I/0 with the host console is necessary, as
in a) above, the wuser program should at 1least
periodically check the HOST port status to see if it
wants to terminate the execution of the user program. If
data is waiting a call should be made as explained above

to fetch the data so that the monitor can interpret it

s i aw iemme e mem mn e

d) the user always returns coantrol to tke HOST via a
Jump to location @0388 in MDS memory; a &ST 7

instruction will also accomplish the same thing

e) do not forget that MDS wuser memory starts at
location 40008 and all HEX files should be assembled for

addresses above that location

56

7. SYSTEM ERROR MESSAGES
“ System error messages are the result of either user
data input errors or disk I/0 errors. A list with brief

explanations follows:

A. USER INPUT ERRCRS -

INVALIT MENU SELECTION - this message is displayed
when an option is input which 1is not one of the
selections from the menu, (* this error returas the user

to the menu *)

TOO MANY OR TOO FEW TELIMITERS IN INPUT - used to
indicate that too many or too few parameters were linput
than expected, Acceptadble delimiters are a space or a

comma., (* this error restarts the curreat option *)

PERIOD ONLY PLEASE ! - given when a jperiocd is input
to terminate input and the period 1{s preceded or
followed by other input data. Only a periocd may be

input. (* this error restarts the current option *)

INVALIT HEX LIGIT - an input of a non-dex digit (not
in the range ©-9, A-F) was attempted. (* this error

restarts the current option *)

mi

——

L

—

CAN’T HAVE A DELIMITER AT START CK END OF INFUT -~
either a space or a comma was input as the first or last
charicter 1in an iaput 1line. (* tkis errorestarts the

curreant option *)

TW0 OR MORE ILELIMITERS SEQUENTIALLY - too many
delimiters were 1inserted between input parameters. (%

this error restarts the current option *)

AMBIGUOUS FILENAMES NOT ALLOWET - the filename which
was input contained a “?” . (* this error reprempts fcr

new input *)

COLON (:) NOT PROFERLY PLACEL IN FILENAME - the only
colon allowed 1in the filename is after the drive code
and before the first letter of the filename. (* this

error reprompts for new input *¥)

FILENAME TO00 LONG OR TCO SZCRT - maximum filename
length is 8 characters; minimum is 1. (* this error

reprompts for new input *)

HEX FILETYPES ONLY ! - only files of type “.HEX’ are
implemented in this version. (* this error reprompts for

new ioput *)

"

NO SPACES ALLOWED IN FILENAME - filename characters
must be sequential with no spaces. (* this error

reprompts for new input *)

NON-PRINTABLE CHARACTERS NOT ALLOWED IN FILENAME -
only printadble characters are allowed in filename. (%

this error reprompts for new input *)

START ATLRESS CANNOT BE GREATER THAN FINISH ALTRESS
- when in the UPLOAD option, the user must specify MIS
memory address boundaries for upload with the start
address lower than the end address. (* <his error

restarts the upload option *)

WARNING - ONLY CURRENTLY SELECTEL TISK WILL EE USET,
INPUT IGNORED ! - this version of AMDS does not allow
disk drive specification unless it is the same as the
disk currently 1logged in to the wuser. Other drive
specifications are ignored and the option defaults tc

the currently logged disk.

B. CISK I/0 ERRORS -

FILE NOT FOUNL - the file specified cannot be fcund

in the directory for download to the MIS. (* this error

restarts the download option *)

HEX CHECKSUM ERROR - a data error was detected while
trying to download a HEX file., (* this error returns the

user to the menu *)

LISKE REAT ERROR - an attempt was made to read a disk
file but was unsuccessful; check diskette media then the

disk drive. (* this error returns the user to the menu

*)

OUT OF LIRECTORY SPACE - disk directory 1is full;
delete files or wuse another diskette. (* this error

returns the user to the menu *)

OUT OF DIRECTORY OR DISK STCRAGE SPACE - ran out of
space in one of these areas while attempting to write
data to a disk; **% when this occurs, the data already

written is deleted, 1.e. NO PARTIAL files are saved **%,

(* this error returns the user to the menu *)

e

APPENDIX B

FLOWCHARTS FOR HOST AND MDS USER OPTIONS

‘ OPTION A) (OPTION B)
SET MENU RESET MENU
SUPPRESSION SUPPRESSIQV
FLAG FLAG
MENU MENU
MENU SUPPRESSION NO MENU SUPPRESSION

OPTION D

;

(OPTION C > GET 2 NO's
CVT TO BINM
PRINT
INST'S DO ADD &
SUBTRACT
(MENU)
CVT TO HEX
e DISPLAY
MEHU

BASIC INSTRUCTIONS HEX ADL/SUBTRACT

¢

OPTION E OPTION F

REQUEST
CONTROL PRINT
FROM MDS SIGNOFF

Cp/M(MP/M)

YES NO

MENU

RETURN CONTROL TO HOST

RETURN TO CpP/M

62

[

DOWNLOAD HEX FILE TO MDS MEMORY

OPTION G

GET
FILENAME

OPEN FILE

YES

NO

MENU

SEND MDS
DWNLD CMD

I_________.

READ A
HEX RECORD

SEND RL, LA
& DATA-MDS

ES

TELL MDS
DONE

(HOST FLOW)

DWNLD

i

GET RI, LA,
DATA: STORE

D
YES

(MDS FLOW)

NO

NO

UPLOAD FROM (IDS MEMORY TO HEX DISK FILE

GET START X
‘ OPTION H) END ADDRS.
GET it
FILENAME TO DS
GET DATA
DELETE{YES FROM MDS
FILE
FORMAT D
! NO & WRItE %8
DISK
CREATE \
NEW FILE
EID NO
XFER?

(HOST FLOW)

CLOSE FILE
UPLD
\
MEN
} GET START/ MENU
- END ADDRS.
SEND DATA
TO HOST
TELL HOST
o DONE
YES
MONITOR

(MDS FLOW)

Bu

Eiat 2EEaien Lol ol

ro—

EXAMINE/SET MDS MEMORY

OPTION I

GET START
ADDRESS

)

SEND CMD &
ADDR » MDS

GET DATA
FROM MDS

DISPLAY
DATA

¥

GET NEW
DATA

NO

ﬁ_—-

SEND DATA
TO DS

YES

A

TELL DS
DONE

(HOST FLOW)

GET START
ADDRESS

MENU

GET NEXT
MDS DATA

SEND DATA
TO HOST

(MDS FLOW)

.

e A

Rt et e

s T T

CONTINUQUS DS MEMORY SET

OPTION J ‘ CONT)

GET START GET START
ADDRESS ADDRESS
: GET DATA
T ADa FROM HOST:
STORE IT
\
GET DATA o
FOR MDS DONE?
YES
' MONITOR
10
SEND DATA
TO DS
TELL MDS
DONE

< MENU)

(HOST FLOW) (MDS FLOW)

3 e .
—— ————— [

FILL MDS MEMORY WITH SPECIFIED BYTE 5

(opTION K) (FrLr)

GET START & GET ADDR'S
2l R
SEND CMD + FILL
ADDR's/DATA MEMORY

YES
YENU TELL HOST
DONE
(‘moNITOR)
(HOST FLOW) (MDS FLOW)

67

S

LOCATE BYTE SEGUENCE IN DS MEMORY

{ OPTION L)

GET START/
END ADDR'S
& DATA

SEND ADDRS
& DATA/CMD

YES

PRINT
FOUND ADDK{

e |

MENU

(HOST FLOW)

LOCATE

GET ADDRS
& DATA

DO SEARCH

3EQ.
FOUND?

NO

SEND
FOUND MSG

SEND NQOT
FND MSG

MONITCR

(MDS FLOW)

pUMP 1DS MEMORY TO THE HOST CONSOLE

YES

MENU

(HOST FLOW)

69

(DUMP)
\

GET STARY
END ADDR§]

-

SEND DATA
TO HOST

TELL HOST
DONE

(MONITOR)

(MDS FLOW)

EXECUTE USER PROGRAM IN MDS MEMORY

GET EXEC,
ADDRESS

SEND CMD+
ADDRESS

EXEC

JUMP TO
EXEC ADDR.

b

MDS EXEC,
COMPLETE

PERFORM
I/0

‘q

MENU

(HOST FLOW)

MONITOR

(MDS FLOW)

= e oAl e

VERSION 1.5,

% 6 3¢ 3t 3 3 o FO# I F B

org
CPM EQU
BLOS EQU
MSTATPT EQU
MDATAPT EQU
CONIN EQU
CONOUT EQU
PRTSTRG EQU
REAICON EQU
CONST EQU
QPENF EQU
CLOSEF EQU
LELF EQU
READF EQU
WRITEF EQU
MAKEF ECU
CURRNTD EQU
| SETIMA EQU
: CR EQU
; LF EQU
: ESC EQU
COMMA EQU
PERIOD EQU
SPACE EQU
BKSPCE EQU
XON EQU

28 MAY 1981
LT. STEPHEN M. HUGEES = author

1¢@éh

goo0H
A005H
268
28H

1

2

g

19

11

15

16

16

29

21

22

25

26
@TH
2AH
154

ra ’

rd ’

¢8H
2118

APPENDIX C

AMLS BOST CONTHOL SOFTWARE LISTING

AMDS - ALTOS MICROCOMPUTER TEVELOPMENT SYSTEM
(HOST COLE)

This is the HOST (ALTOS) control code for the AMLS.
Separate code for the MLS onboard monitor is listed
under the filename AMIS1.ASM

The AMILS user”’s manual should be consulted for
specifics not given in tre documentation which follows.

7WARM BOOT RE-ENTRY TG C?/M
yLOS ENTRY POINT

#MCS SI0 STATUS POKT

+MDS SIO DATA PORT
;CONSOLE INPUT FUNCTION
yCONSOLE OUTPUT FUNCTION
yPRINT STRING TO CONSCLE

y REAL CONSOLE EUFFER

CONSOLE STATUS FUNCTICN
yOPEN FILE FUNCTION

iCLOSE FILE FUNCTION
sCELETE FILE FUNCTION
yREAD SEQUSNTIAL FUNCTION
JWRITE SEQUENTIAL FUNCTION
yMAKE FILE FUNCTION

s GET CURRENT DISK FUNCTICN
ySET IMA ALLRESS FUNCTION
yASCII CARRIAGE RETURN
yASCII LINE FEED

yASCII ESCAPE COILE

yASCII COMMA

+ASCIT PERIOD

yASCII SPACE

+ASCII BACK-SPACE

i CONTROL Q

3 38 e 330 2 6 e e 28 e ek A8 3 S0 ok 46 v e 3 e e o0 e ek e sl e o e el e ol o e ik e e e o sl sl i e e e ol e ke ol ol e

&
¢

B

%O O #

3 3

e 35 3 3% 2% 3% 36236 3¢ 336 36 e e A% e e e e 30 W HEK R KKK e %o Ak %0 30 348 e 348 36 34e 36 e ek e ek de e e e ek e s YR o ik ek sk sk

MINCHCE
MAXCHCE
EQOF
NHSTCML
STACK

STARTER

MENU

MENU@1

MENUG11

MENU@12
MENU@13

EQU
EQU
EQU

EQU
EQU

XRA
STA
STA
LXI

CALL
XRA
STA
INR
STA

MVI
STA
Lxl
LIA

4

‘A
1AH

6
3

A
SYSSTAT
MENUSUPF
L,SIGNON

PRINT

A
MDSRDYF
A
MENUFLG

A,48
CONBUFF
SP,STACK
MENUSUPF
A

MENU@1

L ,MENUMSG
PRINT
STATSYS
BUFFRL

A

SCAN
MENUO11
L,MFTELERR
PRINT
CELAY
MENU

D

B
MENUQ11
D

1F3
MINCHCE
MENU@12
MAXCHCE
MENU@13
A.l
ERROR
PSW
NHSTCMD
MENUQ14

" ANT 1FE
N°+1 AND 1FH

tMINIMUM MENU CHOICE
yMAXIMUM MENU CHOICE
yCONTRCL Z - END OF FILE cr
; BUFFER INTICATOR

s CURREN' NUMBEK OF HOST CMLS
1€E4 LEVEL STACK AVAILAZL

y INITIALIZE HOCST IN CONTsOL,

yMENU NOT SUPPRESSEL
yPRINT SIGNON ANL BASIC
7 INSTRUCTIONS

sINIT. MLSHLYF EVERY TIME

yLEFAULT TO NO MENU

7y SUPPRESSION ON MENU ERRCRS
7 OTHER THAN INVALILC CEOQICE
tINIT. CONSOLE REAT EUFFEX

i TO 48 CHARACTERS MAX

ySET STACK PCINTER

yPRINT MENU?

' NO
yYES

sDISPLAY SYSTEM STATUS

yGET MENU CHOICE

yNO CELIMITERS ALLOWEL
;CEECK INPUT FOR DELIMITZRS3
i SCAN 0K

; INPUT ERROR (SYNTAX LIKELY)

;LELAY TO REAL ERROR MSG %
3BACK TO MENU ‘
+ALL INPUT OK, POINT TO IT

s+ AT ENL OF RUFFER YET?

7 NC, TRY AGAIN ;
; GET OPTION

;CELETE ASCII EIAS

;IS CHOICE < ‘A7?

7 YES, ILLEGAL CHCICE

;1S CHOICE VALIT?

7 APPEARS TO BE

i NO - PRINT ERROR MSG #1

ySAVE OPTION

yIF HOST CMD, MDS CONTROL
; HAS NO EFFECT (EXCEPT

i EXIT CMI)

LTA SYSSTAT ;GET SYSTEM STATUS 1
ORA A
JZ MENUG14 {HOST IN CONTROL
LxI D,CNTRLMSG ;MDS IN CONTROL
CALL PRINT
JMP MENU ;ONLY ESCAPE ¥WILL GET
; CONTROL BACK
MENU@14 POP PSW tRETRIEVE OPTION
MENU1 STA MENUFLG ;SAVE CHOICE FOR USE IN
; HELPING USER LATER
CALL MENUCH $BRANCH TO APPROPRIATE
; CHOICE
MENUCHE MOV C,A ;COMPUTE MENU CHOICE VECTOR
MV I B,?
LXI H,CHOICE-3
DAD B
LAT B
LAL B
PCHL ; CHOICE VECTOR IS IN PC
NOP
NOP

* THIS JUMP TABLE MAY BE ADDET TO FOR FUTURE EXPANSICN UP *
* T0 26 MENU CHOICES *

CHOICE JMP MENSUP ySUPPRESS MENU
JMP NOMENSUP +L0 NOT SUPPRESS MENY
JMP INST s INSTRUCTIONS
JMP HEXARITH ;HEX SUM & TIFPF.
JMP RCNTZ2HST +RETURN CONTROL TO HOST
JMP CPM s RETURN TO CPM

* MDS COMMAND JUMP TABLE *

i JMP CWNLEL sCOWNLOAL HEX FILFE
i JMP UPLD ;UPLOAD HEX FILE
‘ JMP EXAM ;EXAMINE/SET MLS MEMORY
JMP CSET 7 CONTINOUS SET W/0 EXAMINE
JMP FILL ;FILL MDS MEMORY
JMP LOCATE {LOCATE EYTE SEQUWNCE IN
; MLS MEMORY
JMP DUMP ; DUMP MDS MEMORY
JMP EXEC ;EXECUTE MIS MEMORY

#%% F0ST COMMANDS ONLY - MDS DOESN'T CARE WHAT IS o«
##% EAPPENING %

* MENU SUPPRESSION *

73

MENSUP MVI A,l
STA MENUSUPF
JMP MENU

1SET MENU SUPPRESSION FLAG

* NO MENU SUPPRESSION (DEFAULT) =

NOMENSUP XRA A
STA MENUSUPF
GALL CRLF
JMP MENU

* INST — INSTRUCTIONS *
INST LXI L,INSTRUC

CALL PRINT
INST1 CALL CONSTAT

RRC

JNC INST1
CALL CONSIN
JMP MENU

i RESET MENU SUPPRESSION FLAS

sPRINT INSTRUCTIONS
'WAIT FOR RESPCNSE

yLOQP
yGET CHARACTEE

* HEXARITH - ATTCITION/SUBTRACTION OF TwO HEXATECIMAL =*

* NUMBERS *

BEXARITH LXI L ,HEXMSG
CALL PRINT
CALL BUFFRL

MVI A,l
CALL SCAN
JNC HEX1
MVI A,2
JMP ERROR

HEX1 CALL GET4BIN
SHLL FIRST
CALL GET4BIN
SHLL SECONL

MOV B,H
MOV C,L
LHLT FIRST
TAT B
SHLD SUM
LHLI FIRST
ORA A

MoV A,L
SUB ¢

MOV L,A
MOV A,H
SBB B

MOV H,A
PUSH g

74

L‘——-—*

PRINT VERIFICATION MESSAGT

iGET INPUT

yONE CELIMITER KEQUIREL
3 CHECK FOR IT

s ALL TELIMITERS OK
yCELIMITER ERROR

yGET FIRST NUMEER
i SAVE IT
tGET SECOND NUMBER
3 SAVE IT

3BC = SECONL NUMBER

yHL = FIRST NUMBER
sHL = HL + BC
ySAVE SUM

yHL = FIRST NUMBER
1 CLEAR CARRY
yHL = HL - BC - CARRY

*%%x MLS
* DWNLD
LWNLE

OPENOK

RLFILE

RECET

RECLEN

pop
LXI
CALL
LHLL
PUSH
POP
LXI
CALL
LXl
CALL
CALL
JMP

B

2,1EXMSG2+7

CNVT16
SUM

H

B

d,HEXMSG1+8

CNVT16
D,HEEXMSG1
PRINT
CRLF

MENT

yBC = TIFFERENCE
yCONVERT FOR PRINTING

sNOW PREPARE SUM FCR
3 PRINTING
iBC = SOM

*PRINT SUM & TCIFFERENCE

sRETURN TO MENU

COMMANIS ~ INITIATEL BY BOST IN ALL CASES **%

-~ HEX FILE DOWNLOAD FROM DISK TO MDS MEMORY *

LXI
CALL
CALL
LXI
CALL
CPI
JINZ
MVI
JMP
MVI
CALL
XRA
STA
STA
LXI
CALL
LXI

MOV
CPI
J2
INX
CALL
JMP
MVI
CALL
ORA

STA
MoV
CALL
CALL

L,TWNLIMSG
PRINT
SETFILEN
L,FCB
OPENFILE
255
OPENOCK
A,13
ERROR
A%’
MLSCMD

A

CONTFLG
FIRSTIME
H,CSKBUFF
READSK
H,DSKBUFF

421
RECLEN

B

EQFCK
RECHT
B,2
HEXBIN

A
CWNLINE
BUFFCNT
C,a
MLATAOUT
GETSADR

75

PRINT VERIFICATION MESSAGE

tGET & CHECKX FILENAME
yOPEN FILE

yFILE FOUNL?
y YES
3 NO, ERRQOR

sSENL LOWNLOATL CML T0 MIS

yRESET CONTINUATION &
i FIRST THROUGH LCOP FLAGS

;POINTER TO LISK BUFFER
;REAL IN AS MUCH &S POSSIELE
;NOW CONVERT IT TO BINARY &
; SENL I7 TO MIS

sFINT “:” AS RECORC START

3FOONL IT

;END OF FILE/BUFFER?

v NO, TRY AGAIN

yINIT. CHECKSUM

yGET RECCRD LENGTH

+IF RECLEN=@, THEN LONEZ
CONE

SAVE THE RZCLEN

NOT LOMNE -~ SAVE RECLEN
'SENT IT TO MIS

iGET START ADDRESS

* we v ws

LIA
RRC

LCR
STA
SHLD
RECLEN1 SHLT
CALL
XCHG
CALL
HEXTATA CALL
CALL
ICR
JNZ
CALL
INX
JMP
CWNLDNE LELD
PUSH
POP
LXI
CALL
LHLL
LDA
ALT
MOV
MOV
ACI
MOV
PUSH
poP
LXI
CALL
LXI
CALL
CALL
CALL
JMP

GETSADR CALL
MOV
CALL
MOV
XCHG

RET

| CHECKIT CALL
XRA

| ADD

| RZ

FIRSTIME

EECLENl
FIRSTIME
START
FINISH
ALTROUT

HEXBIN
HEXBIN
MODATAQOUT
c

HEXIATA
%HECKIT

RECHL
START
3¢

B
3,DWNDONE1+20

.CNVT16

FINISH
BUFFCNT

H,CWNCONE1+43
CNVT16
L,CWNCONE
PRINT

DELAY
HOSTLONE

MENU

HEZXBIN
E'A
HEXBIN
E,A

dEXBIN
A
B

3 IF FIRST TIME THROUGH LOCP
7y THEN SAVE ALTLR FOR LATEF
sNOT FIRST TIME

ySET THE FLAG

3 AND SAVE THE ADDRESS
7SAVE OTHER LOAL ATIRS
iSENT ATLLRESS 70 MIS
iGET BUFFER PCINTZR BACK
7 IGNORE RECORL TYPE

yGET TATA BYTE

ySEND DATA TO MDS

i CECREMENT RECORT LENGTH
i MCRE TC GET

ySEE IF CKSUM IS OK

3GET NEXT RECORL

yGET STAKTING LOAD ALDR
sPREPARE IT FOR PRINTING

sNOY REALY THE FINISH ALLIR
s GET RECLEN

yPRINT COMPLETION MESSAGE

yTELL MIS TONE

yGET STARTING LCAD ALDKESS
3 FOR RECOREL

 HL
i LE

LOAT ALLRESS
BUFFER POINTER

sCHECK FOR CORRECT CHECKSUM

ySHOULD BE 2ERO
i 0K

; MV I A,14
i JMP ERROR
* UPLL - HEX FILE UPLOAL
UPLD MV I A,128
3 STA BUFFCNT
LXI L,UPLLMSG
CALL PRINT
CALL GETFILEN
LxI L,FCB
CALL DEZLETE
CALL CREATE
CPI 255
INZ UPLDO1
MY I 4,16
JMP EKROR
UPLDZ1 CALL BUFFRD
MV I a,1
CALL SCAN
INC UPLD1
MV I 4,2
JMP ERROR
UPLDYl CALL GET4BIN
SHLL START
CALL GET4BIN
SHLD FINISH
XCHG
LHLD START
MOV A,B
SUB L
MOV A,T
SBB H
JNC UPLI2
MY I A,17
JMP ERROR
UPLI2 MYVI AU
CALL MLSCML
LELD START
CALL ALTROUT
LHLL FINISH
CALL ADDROUT
- LXxI H,CSKBUFF
: UPLL3 MVI a,%:”
- CALL BUFFCK
CALL WRITLEN
CALL WRITALLR
CALL WRITTATA
CALL WRITCKS

(SAVE)

7

y CHECKSUM ERRCR

OF MIS MEMORY TO TLIS¥ *

+ INIT. BUFFER COUNT

yPRINT VERIFICATION MESSAGE

yGET FILENAME & CdZECK IT

yLELETE ANY EXISTING FILE
;CREATE A NEW FILE

.
’
.
!
.
’

CREATE 0K?
YES
NO, OUT OF TLIRECTCRY SPACE

;GET ADLRESS INPUTS

n
r\

yONE TELIMITER ALLOWEL

1 SCAN OK
s ERROR

;GET MDS START & FINISH

.
1

ALLRESSES FOR UPLOAL

yLE = FINISH ALLRESS
yCHECK FCR START > FINISH

.
14

0K

ERRCR - START > FINISH

iSENL UPLOAL CML TO MIS

+SEND START & ZIND ADDRESSES

+STCRE RECORT HEATER

ySTORE RECORL LENGTH
ySTORE STARTING LCAT ALLR
+ & RECORD TYPE

yGET ANL STORE TATA
iSTCRE CHECKSUM & CR,LF

e L Re

',. - [-
B A VUV U U
'

JMP
JRITLN@1 XRA

JMP
WRITLEN MVI

WRITLEN1 MVI
CALL
RET
WRITALLR LTA
CALL
LLA
CALL
PUSH
LELL
LX1I
DAD
SHLT
POP
XRA
CALL
RET
WRITDATA MVI
WRITLTA1 CALL
LTA
RRC
JC
CALL
DCR
RZ
IMP
WRITDNE XRA
LCR
Iz
CALL
§ IMP
s WRTING@1 CALL
CALL
LIA
MOV
CPI
3z
WRITING1 MVI
INX
ICR
INZ
CALL
4RITINE1 CALL
LXI
CALL
CALL
IMP

papanat

UPLD3

A
WRITLEN1
A,16

B,0
BINHEX

START+1
BINBEX
START
BINHEX
B

START
L,16

D

START
B

A
BINHEX

C,lG
MISIN
MLSRLYF

WRITINE
BINHEX
¢

WRITLTAL
A

¢
WRTLNGOL
BINHEX
WRITINE
WRITCKS
ARITEND
BUFFCNT
B,A

128
WRITINEL
Q,EOF

B
WRITINOL
WRITEDSK
CLOSFILE
L,UPLLONE
PRINT
LELAY
MENT

;DO ANCTHER HEX RECORD
WRITE LENGTH, ALTERNATE

+ ENTRY FCR ZERO RECLEN
yALL RECORDS HAVE RECLEN=1€
7 EXCEPT THE LAST

+ INIT. CHECYSUM

7CNVYRT TC HEX ASCII & STCERE

ySTORE RECORT START ALLR

i SAVE BUSFER POINTER

;BUMP START ALLR FOR NEXT
+ TIME

}RESTORE BUFFER POINTER
+STORT RECORL TYPE

;DATA COUNTER
yGET LATA FRQM MLS
fMORE TATA OR MLS LONE?

7 MIS LONE
{MORE TATA

$16 BYTES YZT?
i YES

y NO, CONTINUE

$FILL REMAINIER OF RECORCL
7y WITH ZEZRGS

s STORE CHECKSUM
ySTORE LAST RECORY
;IS BUFFER FULL?

; YES

s NO, FILL REMAINTER WITH

i EQOF’s

sTONE WITH FILL?

t NO, CONTINUE

s YES, WRITE RECORD TO DI3K
tCLOSE THE FILE

sPRINT CCMPLZTION MESSAGE

wRITCKS MCV
CMA
INR
CALL
MVI
CALL
MVI
CALL
RET
WRITEND MVI
CALL
CALL
XCHG
LXI
SHLL
XCHG
CALL
CALL
RET
BUFFCK MOV
INX
LDA
LCR
JZ
STA
RET
WRITEIT CALL

LXI
MVI
STA
RET

¥ EXAM - EXAMINE/SET MLS MEMORY

EXAM LxI
CALL
CALL
XRA
CALL
JNC
MVI
JMP

EXAM@1 CALL
SHLL
MVI
CALL
LHLL
CALL

EXAM1 CALL
STA

A,B

A
BINHREX
A,CR
BUFFCK
A,LF
BUFFCK
A,
BUFFCK
WRITLANCL

H,00008H
START

WRITALILR
WRITCKS

M,A

d
BUFFCNT
A
WRITXZIT
BUFFCNT

WRITELSK

d,CSXRUFF
A,128
BUFFCNT

L,EXAMSG
PRINT
BUFFRD
A

SCAN
EXAMO1
A,2
ERROR
GET4BIN
START
A,'X
MDSCMD
START
ATLROUT
MDSIN
MISTATA

+STORE CHECXSUM
;GET NEGATIVE OF SUM
i ALL ONE

ySTORE CR,LF SECUENCE AT
7 HEX RECORL ENT

+ STORE LAST HEX RECORL

ySTORE @@ RECORT LENGTH
yDE = BUTFER POINTER
ySTORE 0090 LOAL ATLLR &
7 RECORL TYFPE

yHL = BUFFER POINTZR

3 STCRE CH®RCKSUM
;STORE LATA
y IS BUFFER FULL?

i YES, SAVE IT ON LISK
i MO, SAVE COUNT

y&RITE 128 BYTE RECORL T9
i DISK

JREINIT. BUFFER ARTA

3 ANT BUFFER CCUNT

LOCATION(S) =
yPRINT VERIFICATION MESSAGE

iGET ADDRESS INFUT

+NO CELIMITERS ALLOWEL
yCELIMITER CHECX

7y SCAN OK

i INPUT ERROR (SYINTAX OR HEX)

+GET START ADLRESS
;SENT EXAM/SET CML TO MLS
iSENC START ALLRESS TO MIS

yGET DATA IN MDS MEMORY
7 SAVE IT

! PUSH
. MOV
LX1
CALL
POP
PUSH
LXI
CALL
XCHG
CALL
CALL
ORA
Jz
XRA
CALL
JNC
EXAMO20 MVI
JMP
EXAM@2 CALL
ORA
Jz
RAR
JC
MVI
JMP

EXAMZ CALL
MOV
JMP
NOSET LTA
SET1 CALL
POP
INX
JMP
EXDONE CALL
JMP

H
C,A

d,EXAMSG2+1

CNVTS8

B

B
H,EXAMSG1
CNVT16

PRINT
BUFFRD1
A

NOSET

A

SCAN
FXAME2
A,2
ERROR
CKPERIOT
A

EXAM2

EXLONE
A,:’J
EKROR

GETZ2BIN
A,L

SET1
MISTATA
MLCATAQOUT
2!

!

EXAM1
HOSTDONE
MENU

1 SAVE ATLR. BEING EXAMINEL
yC = MDSDATA
;CONVERT LATA FOPR PRINTIANG

+GET ATDR. BACK,
; BUT SAVE IT
y CONVERT AITLR. FOR FRINTING

;LE = EXAMSG1

sPRINT MLS ALLR. & LATA
yGET REPLACEMENT TATA

i IF NO INP2UT, THEN PUT OLI
i LATA BACX

yNO CELIMITERS ALLOWED

7 SCAN CK

y INPUT ERROR

ySTART OPTION OVER

7 IF INPUT WAS A PERIOL,
3 THEN LONE

; N@ PERIOL, GET LATA
yPERIOL ONLY?

v YES - ALL DCNE

i NO - PERIOL + TATA IS
i ILLEGAL, START OVER

ySENLC NEW TATA

iGET OLL LCATA

y BUMP ADDRESS FOR EXAM/S:T
yGET MORE TATA FROM MLS

iy SIGNAL MDS TONZ
yEACK TO MENU

* FILL - FILL MIS MEMORY LOCATION(S) WITH SPECIFIID DATA *

FILL LXI
CALL
CALL

MVI
CALL
JNC
MVI
JMP
FILL1 CALL
SHLL

L,FILLMSG
PRINT
BUFFRD

A,2
SCAN
FILL1
A,2
EEROR
GET4EIN
START

$PRINT VERIFICATION MESSASE

yGET INPUT ADDRESSE3S + FILL
7 LATA

+T40 LT IMITERS RECTIREL

i CJECK 7OR THEM

i SCAN 0u

+JMP ERRCR

i START CPTION CVER

yGET START ALLRESS

i SAVE IT

FILL2

CALL
SdLL
CALL
MOV
STA
MVI
CALL
LHLL
CALL
LELD
CALL
LTA
CaLL
MVI
STA
CALL
XRA
STA
STA
JMP

GET4BIN
FINISH
SET2BIN
AL
CONSLATA
A,'F
MDSCMD
START
ALTROUT
FINISE
ALLROUT
CONSTATA
MDATAOUT
a,1
SYSSTAT
MDSIN

A
SYSSTAT
MDSRDYF
MENU

* SENT 16 BIT ALLRESS TO

ATZROUT MQV

#*
(¢}
w

ET

C2
o
t=1
3

CSETQ1

CSET1
C¢SET11

CALL
MOV
CALL
RET

4,d
MZATACUT
A,L
MLATACUT

iGET FINISE ADDRESS

i SAVE IT TOQO

yGET FILL TATA

ih = DATA

i SAVE IT

ySENT FILL CML TO MIS
;SENT START ALLR. TC MIS
ySEND FINISH ATDR. TC ™“TS
}SENT FILL TATA TO MIS
iMLS IN CONTROL

iMD3 DONE FILLING?
; YES ~ CLEAR FLAGS

RETURN TO MENJ

MLS - CALL WITH HL = ALTRESS *

iMSB FIRST
7 THEN LSB

;BACK TO CALLER

- CONTINUOUS SET MDS MEMCRY WITEOUT EXAMINE *

LXI
CALL
MYl
STA
CALL
XRA
CALL
INC
MVI
JMP
CALL
SHLL
MVI
CALL
LHLT
CALL
JMP
CALL
CALL

L,CSETMSG

PRINT
A,2FFH
CONBUFF
fUFFRD
SCAN
CSETOL
3,2
ERROR
GET43IN
START
A,°¢’
MDSCMD
START
ALTROUT
CSET11
CRLF
BUFFRL

81

'FRINT VERIFICATION MESSAGE

;INIT. CONSQLE REAL IUFFER
; TO 255 CHARACTERS MAT
yGBT START ADDEESS

iNO TELIMITERS ALLOWEL

7 SCAN OK

; INPUT ERROR

ySTART OPTION OQVER

;SENT CSET C~L TO MIS
}SENL START ALTRESS 70 MI3

3GET REPLACEMENT TATA TILL
y BUFFER FULL Ok <CR>

[

CALL
CALL
ORA
JZ
RAR
JC
MVI
JMP
CSETZ2 CALL

CSETZ21 CALL
MOV
CALL
MOV
LXI
CALL
XCHG
CALL
XCHG
MCV
CPI
JZ
CPIl
Ji
JMP

CSET3 CALL

JMP

SCAN
CKPERiOL
A

CSET2

CSEIT3
4,3
EKROR
STAR

SET2BIN

A,L
MLATAQUT
C'A
3,DATAMSG+1
CNVTSE

PRINT

A,B

gFFE
CSET1

290

CSET1
2SET21
d0STIONE

MENU

+LOOK FOR ESCAPE
; CHECK FOR PXRIOT IN INPUT

7 NO PERIOL, GET LATA

+ PERIOD ONLY - ALL LONE

s INPUT ERROR,

' STAKT OPTION OQVER

yPRINT A LEADING S5TAR

7y PRIOR TO VALILATION TATA
yGET LATA

;SENT IT TO MIS

ySEND IT TO CONSCLE FCR
7 VERIFICATION
yLE = AICR. OF LATAMSG

yLX = CURRENT CONZUTFF PTX
yAT ENI CF BUFFER?

; 135, START OVER

y YES, START CVER

iNO, GET MORE TATA

sNO LATA TGO SENT, SISNAL
i MDS DONE

yRETURN TO MENTU

| % EXEC - EXECUTE MIS MEMORY FROM A SPECIFIEL ALTRESS =

EXLC LXI
CALL
CALL
XRA
CALL
JNC
MVI
JME

EXEC1 CALL
SHLTI
LXI
CALL

EXEC11 CALL
RkC
JNC
CALL
10):9¢
CPI
JNZ

L,EXECMSG
PRINT
BUFFRD
A

SCAN
EX:C1
4,2
EKROR
GET43BIN
START
L,EXMSG
PRINT
CONSTAT

EXEC11
CONSIN
208

Yy

EXEC2

8c

PRINT VERIZICATION MESSAGE

yGET START ALDRESS
yNO IELIMITERS ALLOWEL

i SCAN OK

; ERROR

s START OPTION OVER

yGET START ADDRESS

i SAVE IT

+SEE IF TATA FROM MIS TO
3y CONSOLE OR NCT

yHAIT FOR RESPONSE

7 LOOP

yGET RESPONSE

+FORCE TO LOWER CASE

} CONSOLE INPUT FROM MD3?

¢ NO, SEAL CML & RETURN TO
3 TC MENU

LXI
cALL
MV1
CALL
LELL

CALL
EXECQ22 CALL

MOV
LTA
ORA
INZ
CALL
JMP
GETINP CALL
RRC
JNC
CALL
Carl
XRA
STA
JMP
MVI
CALL
LHLT
CALL
MVl
STA
JMP

|28}
e
=y
(@]
n

D,EXM3G2
PRINT
A,’E’
“TSCMD
START

ATDROUT
MLSIN

I,A
MISRLYF
A
GETINP
CONSOUT
BXECe2¢
CONSTAT

JETINP
CONSIN
MIATAQUT
A
MDSRLY?F
2X2C029
A,’E’
MDSCMD
START
ALTROUT
A,l
SYSSTAT
MENU

yGIVE ESCAPE MEITHOLS

7 YES, SENL C¥L TO MIS &
i LOOFP #AITING FOR LATA

7 O LONE FROM MLS QR ESC
i FROM CONSCLE

$TOOP AT MISIN TILL ESC
i OR Q° OR LATA

;3AVE DATA FROM MDS
}SEE IF MLS WANTS INPUT

1ES
NO, SENC IT TC CONSOLE

'

'

; WAIT FOR MORE

iGET INPUT FRCM KEYBOART

JSENT IT TO MIS
yRESET MISRIY FLAG

yLOOP AGAIN
ySEND MLS EXEC CML

ySENLC START ALLKESS 70 MILS
;SET MD5 CONTROL FLAG

yBACK TC MENU

* LOCATE ~ LOCATE A SPSCIFIED BYTE SEQUENCE IN MDS MEMORY *

LCCATE CALL
LxI
CALL
MVl
STA
CALL
XRA
CALL
JNC

MVI
CALL
JNC

MV I

JMP
LOCATEL CALL

SHLIL

CLRBUFF
D,LOCMSG
PRINT
A,BFFH
CONBUFF
BUFFRL

A

SCAN
LOCATEL

A'l
SCAN
Locel

4,2
ERROR
GET4BIN
START

yCLEAR REAT BUFFER
i PRINT VERIFICATION MESSAGE

INIT. CONSOLE REAT EUFFER
i TC 255 CHARACTERS MAX
;GET ALTRESS(ES)

JANY TELIMITERS ?

; NO, USE LEFAULT FINIGH
y ALIRESS
yMORE THAN ONE DELIMITER?

i NO, GET OPTIONAL FINISH
y ADDRESS

{MORE THAN 2 LELIMITERS

i ERROR, START OPTION OVER
yGET START ADLRESS

[P TORF e Y'Y N

JMP

10Ce1 CALL
SHLD
CALL
3dLT
JMP
LOC1 LXI
SHLT
LOCDATA MVI
CALL
LHLL
CALL
LELL
CALL
MVI
PUSH
LCCLATA1l CALL
CALL
CALL
LOCTATAZ CALL
MOV
CALL
MOV
LXI
CALL
XCHG
CALL
XCHG
MOV
CPI
JZ

CPI
JZ

POP
LCR
PUSH
JZ

JMP
LOCS CALL
CALL
ORIl
CPI
JZ
LXI
JMF
FCUNT LXI

Lccl

3ET4BIN
START
JET4BIN
FINISH
LOCTATA
d,3FFFFH
FINISH
AL’
MLSCML
START
ADDEROUT
FINISE
AITROUT
A,16

PSW
BUFFRL
SCAN
STAR
SET2BIN
&,L
MCATAQUT
C,A
H,DATAMSG+1
CNVTS8

PRINT

A,B
2FFH
LOC5

28
LOC5S

PSw
A
PSW
LGCS

LOCLATAZ
HOSTRDY
MLSIN

82H

IF‘

FOUNI
CL,NOTFOUNL
ERROUT
L,FOUNLMSG

684

s NO COMMA, FINISH ATLTRES3S3
i LEFAULTS TC @FFFFY -

i GET LCATA

+GET START ALLKRESS

7 COMMA, GET FINISH ALTKESS

+SAVE LEFAULT FINISH ALTRESS
ySEND LOCATE CML TO MDS
7SENDC START AITRESS 70 MLS
;SENL FINISH ALTRE3S TO MIS

:16 BYTES MAX

7y SAVE EYTE COUNT
yGET SEARCH SEQUENCE
7 LOOK FOR ESCAPZE
yPRINT A4 STAR

yGET A BYTE

7SENE IT TO MIS

i & TO CONSOLE FOR
3 VERIFICATION

+AT ENT CF BUFFER?

;y YES, WAIT FCR SEARCEH
+ RESULTS

YES, WAIT FOR SEARCH
RESULTS

NO, GET BYTE COUNT

716 EYTES YET?

SAVE BYTE CCUNT

YES, WAIT FOR SEAZCH
RESULTS

NOT AT ENI OR 1€ BYTES

iy TELL MDS TO SEARCH

yGET MLS RESPONSE

1 LOCKING FOR ASCII

yBYTE S5Q. FOUND?

7 YES

i FRINT NOT FCUNI MESSAGE

3 BACK TO MENU

;PRINT FOUNL MESSAGE

we W we wy

. wo we we we

4 4

CALL
CALL
MOV
CALL
MoV
LXI
XCHG
CALL
JMP

Ly~P CALL
LXI
CALL
CALL
XRA
CALL
JNC
MVI
CALL
JNC

MVl
JMP
LUMPE1 CALL
SHLD
JMP
LUu¥P@lw CALL
SHLD
CALL
SHLT
JMP
LMP1 LHLI
LX1
DAD
SHLL
LUMPZ MVI
CALL
LHIL
CALL
LELD
CALL
LUMP3 LXI
PUSH
CALL
CALL
MoV
LTA
ORA
JNZ

PRINT
MDSIN

B,A

MLSIN

C,A
H,FOUNIMS1

PRINT
MENU

CLRBUFF
L,CUMPMSG
PRINT
BUFFRL

A

SCAN
LuMpel
A,l

SCAN
LUMPO10

A,2
ERROR
GET4BIN
START
LUMP1
S3ET4BIN
START
GET4BIN
FINISH
DUMP2
START
B,01C0H
B

FINISH
A,°T°
MDSCMD
START
ATTROUT
FINISH
ALLROUT
T,LUMPMSG3
D
MSG3INIT
MISIN
C,A
MLSRIYF
A
DUMPDONE

85

» GET FOUND ALDRESS M33
yGET LSB OF ALLR
7CONVERT ALTLR. FOR PRINTIANG

s PRINT ADDKESS
;BACK TO MENU

* LUMF - LUMP MLS MEMCRY LOCATION(S) *

yCLEAR REAL EUFFER
+ PRINT VERIFICATION MESSASE

;GEP ATILRESS(ES)
JANY TELIMITERS?

7 NO

;MORE THEN ONE LELIMITER?

; NO, GET OPTIONAL FINISE
i ALTRESS

iMORE THAN ONE DELIMITER

y ERROR, START OPTICN OVEEK
yGET START ALLRESS

7 NO COoMmMMA
sGET START ALLRESS

yGET OPTIONAL FINISH AILLR
tMAKE FINISH ATLIRESS =

i START + 25€

;SENL TLUMP CMI TO MIS

;SENC START ATLIRESS TO MI5
iSEND FINISH ALDRESS TO MIS

JASCII TATA STORAGE

;INIT. ASCII STORAGE
iGET EYTE

;LS LONE TRANSMITING LATA?
y IES

MOV
STA
LHLD
MOV
MOV
LXI
CALL
LCHG
CALL
MVI
LUMFLATA POF

LIA
MOV
CPL
JNC
CALL
JMP
LMPCTAL CPI
CNC
CMEDTAZ STAX
MOV
INX
PUSH
LXI

PUSE
CALL
XCHG
CALL
POP
ICR
J2
CALL
STA
MOV
LTA
ORA
JNZ
JMP
SEERIOL MVI
RET
NITLINE LXI
CALL
LXI
LHLL
CAL
SHLD
POP
LTA
ORA

i,C
MISTATA
START

B,H

C,L
H,DUMPMSG1
CNVT16

PRINT
B,16
L

MISTATA
C,A

2CH
ImMPLTAL
SPERIOL
DMPDTAZ
8¢H
SPERIOIL
D

A,C

L

D
d,LUMPMSG2+1

B
CNVTS8

PRINT

2

B
NXTLINE
MISIN
MISTATA
C,A
MISRIYF
A
NXTLINE
LUMPTATA
A,’.”°

L,LUMPMSG3
PRINT
B,@201¢H
START

B

START

L

MLSRIYF

A

i NO = SAVE LATA
yBC = START ALDDRESS

;SIXTEEN BYTES PER LINE

y RECALL ASCII TATA STORAGE
3 LOCATION

3yGET TATA

»IS LATA ASCII PRINTABLE?

y YES
i NO - STORE & PERIOL

yGREATER THEN ASCII

5 YES, 3TORE A PERIOL

s STORE DATA AS IS
yRESTORE ORIGINAL TLATA

y BUMP STORAGE ALTRESS

7 AND SAVE IT

iNOW CONVERT LATA TO HEX
7 ANI PRINT IT

i SAVE COUNT

;GET COUNT BACK

316 BYTES YET?

i YZS

i NO -~ GET NEXT BYTE

1SAVE NEW TATA

7MIS DONE TRANSMITING CATA?

v YES

7 NO - GET NBXT LINE OF LATA
ySTORE A PERICGL IF NOT A

i PRINTABLE ASCII CHAR.
PRINT ASCII CHARACTERS

1GO TO NEXT LINE

; EUMP NEW LINE START ALLRESS
i BY SIXTEEN BYTES

i SAVE IT

+GET GARBAGE OFF STACK

s LONE?

P

LUMPIONE

JNZ
CALL

Siu
CaLL
CALL
XRA
CALL
JNC
MV I
JMP

L¥PLONEL INX

LCR
JNZ
LLAX
ORI
CPI
JZ

JMP

LuMPMORE LHLL

INX
SHLD
JMP

MSGIINIT MVI

M5G31

CLRBUFF

LXI
MVI
STAX
DCR
RZ
INX
JMP
MVI
LXI
MVI
JMP

DUMPLONE
CRLF
DUMP3

A
MLSRIYF
CRLF
BUFFRL

A

SCAN
LMPLONE1L
A,2
ERROR

L

B
CMPDONEL
L

20

d
LUMPMORE

MENU
FINISH
3
START
LuMP1l
B,17

2y
L
B
T\

M3G31
B,255

L,CONBUFF+1

A,20
MSG31

I, DgHEHSIS

v YES

7START NEW LINE

i CUMF TILL LONE

;yCLZAR MLS IONE XMITTING FLG

ySTART NEW LINE
yANOTIER LUMP?
+NO LELIMITERS ALLOWEL

7 SCAN 0K
i BRROR
3 START OPTION OVER

yPOINT TO ENL OF EUFFER
i THERE YET?
i NO, LOOP

;CONVERT TO LOWER CASE

+ YES = LUMP AGAIN FROM

3 PREVIOUS FINISH ALLR.

i NO — RETURN TO MENU
iMAXE FINISH+1 = NEW START
y ACTRESS

yLUMP 256 MORE BYTES

;INIT. ASCII LATA STORAGE
3 AREA TO ALL %73

yINIT. TONE

jCLEAR CONSOLE REAL EUFF:R

yFUT IN ALL ZEROS

* HRCNT2HST - RETURN CONTROL TO HOST *

RCNTZ2HST LTA

ORA
J2
MVI
CALL
XRA
STA
LXI
CALL
CALL
JMP

SYSSTAT
A

MENU
A,°Q
MISCML
A
SYSSTAT

L,ABORTEIM

PRINT
DELAY
MENU

iGZT SYSTEM STATUS

; HOST ALREALY IN CONTROL
ySEND ESCAFE TO MDS

;RESET SYSTEM STATUS FLAG

yPRINT MLS ABORTEL VERIFI-
3 CATION

¥%% UTILITY SURRQUTINES ***

* PRINT A STRING TO THE CONSOLE
* GALL #ITH LE = STARTING ALILRESS OF STRING *
PRINT PUSH PSW 3 SAVE EVERYTHING
PUSH B
PUSH L
PUSH [+
MVl C,PRTSTRG ;OUTPUT STRING TO CONSCLL
CALL BIOS
PQF -4 yRESTORE ALL REGISTERS
POFE D
POP B
POP PSW
RET yBACK TO CALLER

* STATSYS - LISPLAY SYSTEM STATUS *

STATSYS CALL CRLF
CALL CRLF
LIA SY3STAT $GET SYSTEM STATUS FLAG
ORA A
LXI L,SYSMSG+15
JZ SYS1 ;HOST IN CONTROL
LXI H,MDSMSG ;MDS IN CONTROL
JMP SYS1+3 5PUT MLS’ IN MESSAGE
SYS1 LXI H,H0STMSG JPUT “HCST ™ IN MESSAGE
CALL MOVESTR
LIA MENUSGPF ;GET MENU SUPPRESSION FLAS
ORA A
LX1I D,SISMSG+33
Jz SYS3 tNO SUPPRESSION
LXI H,YESMENMG ; SUPPRESSION
JMp SY33+3
SYS3 LXI H,NOMENMSG
CALL MGVESTR
LXI T,S5YSMSG ;PRINT SYSTIZM STA™US
CALL PRINT
CALL MENPMPT ;PRINT MENU PROMPT
RET ;RETURN TO CALLER
MOVESTR MOV a,M 3EL = STRING TO MQVE
CPI ‘% tIE = LESTINATION ATLILRESS
RZ ;RETURN IF MOVE DONE
STAX T ; NOT TLONE
INX T
INX H
JMp MOVESTR ;MOVE NEXT CHARACTER

¥ MENPMPT - PRINT MENU PROMPT *

e e b A -

-

MENPMPT

MENPMT1

®A

*

GETFN1

FILENC

%
* RETURN

FILENCK

FNCK1

FNCEZ2

FNCKD

LLA
ORA
JZ
LXI
CALL
RET
LXI
CALL
RET

% ROUTINES TO GET

GETFILEN CALL

LXI
CALL
CALL
CALL
ORA
JZ
CALL
JMp
CALL
CALL
RET

K -
A

CALL
RRC
JNC
MVI
RET
CALL
RRC
JINC
MVI
RET
CALL
RRC
JNC
MVI
RET
CALL
ORA
JZ

MENUSUPF

A

MENPMT1
L,MENUPRO1
PRINT

L ,MENUPROM
PRINT

* GETFILEN - INITIATE CALLS
MAKING APPROPIATE CHECKS *

CLRBUFF
L,FILENAME
PRINT
BUFFED
FILENCK
A

GETFNL
ERROR
GETFILEN
MOVFN
UCASE

INITIATE ALL FILENAME CEECKS
@0 IF NO ERRCRS
ERRCR NUMBER IF ERRORS IN FILENAME *

o

SCANQ

FNCK1
A,7

SCANCOL

FNCK2
4,8

SCANUM

FNCK3
Ayg
CEPERICT

A
FNCK4

AND CHECK FILENAMES FOR VALITLITY *»*
ONLY INTEL ‘HEX® PILES ARE SUFPORTEL BY THIS VERSION #=

TOR

89

+SUPPRE3S MENU?

i NC
i YES - PRINT SUPPRESEL
i MENU PROMPT

PRINT UNSUPPRESSEL MENU
3 PROMPT

INPUTTING FILENAME ANL

+CLEAR CONSOLE INPUT BUFFER
yPROMPT FOR FILENAME

'GET FILENAME

;L0 CHECKS ON FILENAME

+ySEE IF ANY EERRORS

3 NO ERRCRS

3 ERRORS

+START OVER

yMOVE FILENAME TO FCE
yCONVERT ALL FILENAME

s ALPHABETICS TC UPPER CASE

;SCAN FILENAME FOR “?°

;NONE FOUND

;ERROR -~ NO AMBIGUOUS

7 FILENAMES

{CHECK FOR “:” ANI PROPER
i LRIVE SELECTION

}SCAN OK

sTOO0 MANY COLONS

»

;CHECK FOR TOO MANY OR TCO

; FEW CHARACTERS IN FILENAME
»NO ERROR

s ERROR

;CHECK FILENAME INPUT FOR
i A PERIGD
y NONE FOUNT

CALL SCANHEX ;ONE PERIOL, CHECK FCR
RRC i ‘HEX® FILETYPE
JINC FNCK4 ;FILETYPE OK
MVI A,10 {ONLY ‘HEX’ FILETYPES ARE
RET i SUPPORTEL

FNCK4 XRA A ;CHECX FOR ESCAPE ANT
CALL SCAN ; OTHER LDELIMITER TRRORS
JINC FNCK5 ;NONE FOUNL
MV I A,11 ;NO SPACES ALLOWEL IN
RE?T i FILENAME

FNCK5 CALL SCANINV iCHECK FOR NON-PRINTABLE
RRC ; CHARACTERS IN FILENAME
JINC FNCK6 i NONE FOUND
MVI A,12 ; ERROR
RET

FNCK6 XRA A ;NO ERRORS DETECTED
RET i FILENAME OK

% SCANQ ~ SCAN FILENAME FOR QUESTION MARKS INLICATING AN
* AMBIGUQUS FILENAME
*
&

RETURN A = 20 IF NONE FOUNT
= @QFFH IF FOUNL *
SCANQ PUSH B
PUSH T
PUSH "
XCHG ;EL = BUFFER + 1
MOV c,M {GET BUFFR COUNT
SCANQ@1 INX H ,
MOV AWM ;LOOK FOE "2
CPI ?
JZ SCANQ1 ; FOUNT ONE
DCR c ;KEEP LOOKING?
INZ SCANQO1 ;SCAN NOT LONE
XRA A }SCAN LONE - NO ERRORS
JMP SCANQ1+2
SCANQ1 MVI A,3FFH ;AT LEAST ONE “?° FOUNL
POP i
POP D
POP B
RET
* SCANCCL - SCAN FILENAME FOR A “:° THEN LOOK FOR PROPER
* LRIVE SELECT COLE (ONLY CURRENT LRIVE IN USE
* IS SUPPORTEL, OTEERS ARE IGNCREL)
H# - A “:7 IN ANY OTHER PCSITION IN THE FILENAME IS
* NOT LEGAL
* RETURN A = €2 IF NO EKROR ,
* = QFFE IF AN ILLEGAL “:” IS FOUND *

SCANCOL PUSH B

PUSH
PUSHE
CALL
ORI
INR
STA
XCHG
MOV
INX
INK
DCR
MoV
CPI
JNZ
LCX
INR
MOV
ANI
MOV
LDA
CMP
JZ
LXI
CALL
CALL
INX
LCR
JMP
SCANCOL1 DCX
INR
SCNCCL11 MOV
CPI
JZ
LCR
JZ
INX
ILCR
SCANCOLZ INX
MOV
CPI
JZ
LCR
JNZ
SCNCOLDN XRA
JMP
SCANCOL3 MVI
POP
POP
POP
RET

L

54
CURLSK
40H

A
CURRENT

CURRENT

B
SCNCOL11
D,DRIVERR
PRINT
LCELAY

H

C
SCANCOLZ2

< CANCOL3

¢

SCANCOL2

A
SCANCOL3+2
A,@FFH

H

L

B

iGET CURRENT LISK
yCONVERT IT TC A CHARACTER

;SAVE IT
yGET BUFFER COUNT

;THE ONLY “:” WOULT BE HERE

y NONE HERE
y FOUNT IT, CHECK FOR
3 CORRECT LRIVE

yFORCE TO UPPER CASE

ySAME?

3+ TES, OK

7 NC, PRINT WARNING &
7+ IGNORE IT

i CONTINUE SCAN
;CHECK IF 1st CHAR IS “:

4

y YES, ERROR

; NO

1 SCAN LONE
3SCAN NOT LONE

;SEE IF ANY MORE “:°

+ TES, ERROR

3 NO

1CONTINUE SCAN

s LONE, NO ERRORS DETECTET

’

;TOO MANY “:°

* SCANHEX - SCAN FILETYPE FOR “HEX’
* RETURN A = 20 IF FOUNL
= PFFH IF NOT FOUNL *

SCANHEX PUSH B
PUSE D
PUSHE &
X CHG ;GET BUFFER COUNT
MCV C,M
SCANEX1 INX 1 ;G0 TO PERIOL
MOV A,M
CPI PERIOD
1z COMPARE SFOUNL IT
ICR c
INZ SCANEX1 KEEP LOOKING
JMp SCNEXER ;ERROR, NO PERIOL
COMPARE INX g 1
MOV A,M ;
ANT gLFH ;FORCE TO UPPER CASE g
CPI “H° :
INZ SCNEXER ; ERROR g
INX H y
MOV A M
ANI GDFE
CPI ‘B’
INZ SCNEXER
INX g
MOV A M
ANT gLFH
CPI ‘X
INZ SCNEXER
XRA A ;NO ERROR
JMP SCNEXER+2
SCNEXER MVI A ,0FFH i ERROR
POP H
POP T
POP B
RET

% SCANUM -~ SCAN FILENAME FOR TOCO MANY OR TOO FEw CHARACTZIERS
FILENAME IS CHECKEL ONLY (& CBAAACTERS MAX,

* 1 CHARACTER MINIMUM)

* RETURN A = @€ [F NO ERROR

* = QFFH IF ERROR *

SCANUM PUSH B

pUsSH D

PUSH o4

XCHG ;GET BUFFER COUNT

MoV c,M

MVI B,8 +B = # OF CHARACTER3 IN 7N

SCANUM1 INX H
MOV ALM
CPI ‘e :START COUNT AT “:72
INZ SCANUMZ i TES
DCR B 7 NC, START AT BEGINNING
LCR c ;IONE YET?
Jz SCANUM4 i TES
JMP SCANUM1 i NG
SCANUM2 CPI PERIOL iGO TO PERIQL OR RBUFFER ENT
JZ SCANUM4 ; PERICT, LONE
INR B ;KEEP COUNTING
LCR e
JZ SCANUM4 ; LOME
JMP SCANUM1 ;LOOP
SCANUM4 XRA A ; < 1 CEARACTER?
CMP B
JzZ SCANUMS ; YES, EKROR
MVI a,8 ; > 8 CAARACTERS?
CMP B
JC SCANUMS ; YES, ERROR
XRA A ; NO ERRORS
JMP SCANUMB+2
SCANUMS MVI A,QFFH ; ERROR
POP H
POP I
POF B
RET

* SCANINV - SCAN FILENAME FOR NON-PRINTABLE CHARACTERS

* RETURN A = €0 IF NONE FOUND
* = 2FFH IF ANY FOQUNL *
SCANINV PUSH B
PUSH D
PUSH B
XCHG yGET BUFFER COUNT
MOV C,M
SCANIN1 INX g
MOV A,M
CPI 20H ;7 < SPACE?
JC SCANINZ ; YES, ERROR
LCR ¢ +LONE WITH SCAN?
JINZ SCANINI i NO
XRA A i YES, NO ERROKS
JMP SCANINZ+Z
SCANINZ MVI A,OF7H s ERROR
POP H
POP L
POP B

RET

* MCVFN - MOVE FILENAME FROM CONSCLE EUFFER TO FCE *

MOVFN CALL
LXI
MoV
XCHG
INX
INX
LCR
LLAX
CPI
JZ
LCX
INR
JMP
MCVITELl INX
LCR
MOVIT LXI
MOVIT1 LTAX
CPI

RZ

MCV
INX
INX
LCR
RZ

JMP

* PURGFCB -
-

PURGFCB LXI
LXI
MVI

PURGE1 LDAX
MOV
LCR
JZ
INX
INX
JMP

PURG1 LXI
XRA
STAX
RET

PURGFCE
H,CONBUFF+1
C,M

NeXel-Rel

VITOo1

O e

OVIT

9,FCEF+1

el TR Eo N o RrdieN o e

ERIOD

A

MOVITL

yPURGE ANL SET UP FCE
yGET BUFFER CCUNT

3CE = CONEUFF POINTER
33EE IF IT’S 4 CCLON

7y TES
y NO

;START AT BUFFER START
s START FROM COLON

yMCVE THE FILENAME

3 UNTIL PERIOD OR END
i OF BUFFER

i CONE

;STORE CEAR. IN FCB

yAT END OF BUFFER?
i YES, MOVE [ONE
i NC, LOOP

PURGE FILE CONTROL BLOCK (FCB) AND 3ET IT UP

FOR ACCEPTING A

qH,FC3B
L,FCBMSG
€c,16

D

M,A

¢

PURG1

H

T

PURGO1
L,FCB+32
A

D

FILENAME QF TYPsg HEX *

ySET UP FIRST 16 EBYTES

716 BYTES LONE YET?
7 YZS

i NO, LOOP
yINITIALIZE CURRENT RECORLI
7 BYTE IN FCE

* UCASE - CONVERT ALL FILENAME ALPHABETICS TO UPPER CASE *

UCASE MVI
LXI

Cy8
H,FCB+1

78 CHARACTERS MAX

UCASEZ1 MOV ALM
CPI 7BH ;1S IT > LOWERCASE z?
JINC UCASEL 7 TES, 0K
CPI ‘a i NO, I3 IT < LOWZIRCASE a?
JC UCASE1 ; YES, 0K
aNI QLFH ;MUST BE LOWER CASE
MOV M, A ; CONVERT IT TC UPPEIR CASE
UCASE1 INX H
LCR c ; LONE?
RZ 7 YES
JMP UCASEQ1 ; NO, LOOP
* HEXBIN - CONVERT TWO HEX ASCI! CHAXACTERS TO ONE EIGHT
* BIT BINARY NUMBER
- ALSO ALL IT TO CURRENT CHECXSUM IN B
CALL WITH HL POINTING TO FIRST CJARACTER
* RETURN BINARY NUMBER IN A *

HEXBIN INX 3
MOV A,M ;3BT FIRST TLIGIT
CALL EQFCK yEND QOF RUFFER/FILE?
CALL ASCHEX ;CONVERT TO PURE HEX
RLC sMAKE IT 4 MSR’S
RLC
RLC
RLC
MOV 3,A tSAVE IT
INX d ;GET SECONL LIGIT
MOV A LM
CALL EOFCK
CALL ASCHEX ;CONVERT IT
ATT R ;COMBINE THEM
MOV n,A ; SAVE IT
ALI B yALL TO CHECKSUM
MOV B,A ; SAVE IT
M%¥ ALE ;GET BINARY NUMBER
R

* ASCHEX ~ CONVERT HEX ASCII TIGIT TO PURE HEX LIGIT *

ASCHEX SUI ‘8’ ySUBTRACT OFF ASCII ZIAS
CPI 12
RC y NUMBER IS @-9
SUI 7 'NUMBER IS A-F
RET

* EOFCK - CHECK FOR END OF BUFFER/FILZ

* — IF ENL OF FILE THEN LOWNLOAL IS LONE

* - IF ENT OF BUFFER, KEAL MORE LISK & RETURN WITH
* THE FIRST CHARACTER IN A

* - OTHERWISE, RETURN WITH NO ACTION *

85

AD=AL04 624

UNCLASSIFIED
2 2

NAVM. POSTORADUATE SCHOOL MONTEREY CA
HIC:OP:OC!SM DEV!LMNT SYSTEM FOR THE ALTOS SERIES M!CROC-!‘I’C(U)
JUN 8 M HUSHE!

——————

EOFCK CPI EOF
RNZ
LIA CONTFLG
RRC
JNC DWNLDNE
LXI H,LSKBUFF
CALL REALSK
LK1 H,DSKBUFF
MOV A,M

RET

iNOT END OF FILE/BUFFER
ySEE IF ENL OF FILE

i YES
y NO, REAL MORE

* BINBEX -~ CONVERT AN EIGHT BIT BINARY NUMBER TC TWO HEX

* ASCII CHARACTERS
* - STORE THE CHARACTERS
* - ADL BINARY NUMBER TC

IN MEMORY POINTEL TO BY 4L
RUNNING CHECKSUM IN T

% CALL WITH BINARY NUMEER IN A ANI HL AS ABOVE *

BINHEX PUSH PSw

ALT B

MOV B,A
POP PSW
MOV E,A
ANI ¢FoH
RRC

RRC

RRC

RRC

CALL HEXASC
CALL BUFFCK
MOV AE
ANI gFH
CALL HEXASC
CALL BUFFCK
RET

+SAVE TATA

yATL TO CHECKSUM

i SAVE IT

iGET DATA

3y SAVE IT IN E

;PUT 4 MSB’S INTO LSB’S

;CONVERT TO HEX ASCII
ySTORE IT
yGET DATA

iNOW CONVERT LSE’S
iSTORE IT

* HEXASC — CONVERT A BINARY NUMBER TO A HEX ASCII CHAR. *

dEXASC CPI OAR
JC NUMBER
ADI 7
NUMBEER ATI 30H
RET

** DISK I/0 ROUTINES ¥**
** ALL ERROR COLES RETURNEL ARE
* ANT MP/M CONVENTIONS **

* READ3K - READ THIRTY-TWO (32)
¥ SET FLAG TO INLICATE

+IT IS @-S
yIT IS A-F
yALL ASCII EBIAS

IN ACCORLANCE WITH CP/M

128 BYTE RiCORDS FROM DISK
IF ONLY A PARTIAL REATL *

fEALSK PUSH
MVI

REALSX1 CALL
CALL
CPI
JZ
CPI
JZ
MVI

SEALMORE LCR
JNZ
MVI

MVI
STA
POP
RET
aEAINE XRA
STA
PUSH
LXI
CAL
POP
MVI
PQP
RET

* WRITELSK -

WRITEDSK LXI
CALL
CALL
CrI
RZ
MVI
CALL
CALL
CALL
JMP

B ySAVE B

3,32 yR3AD 32 RECCRDS MAX

CMASET iSET LMA ALLRESS

REALKEC +REAL A SINGLE RECORI

g yGOOD READ?

REATCMORE 7y YES, TO IT AGAIN

1 y EOF?

READNE i+ YES, DONE

A,15 3 NO, REAL ERROR

B . 74K WORTH YET?

READSK1 3 NO, READ MORE

M,EQF 7 YES, STORE ENL OF BUFFER
y INCICATOR

A,QFFH 3 SET CONTINUATION FLAG

CONTFLG

B yRESTORE B

A ;RESET CONTINUATION FLAG

CONTFLG

B

B,~128 ;POINT TG ENL OF LAST RECORD

B

B

M,EOF ;ENSURE EQOF MARKER IN BUFFEER

B ;RESTORE ORIGINAL B

WRITE A SINGLE 128 BYTE RECORL TO LISX *

H,DSKBUFF tPOINT TO DISK BUFFER
LMASET ;SET TMA ALLRESS
WRITEREC ;WRITE RECORL TO TLISK
g ;GO0OD WRITE?

i YES, LONE
A,18 ; NO, OUT OF LISK SPACE
ERROR
CLOSFILE +CLOSE THE FILE BUT
EgLETE ; TON'T SAVE A PARTIAL FILE
MENT

* REALREC - REAL A SINGLE RECORL FROM LISK *

READ#EC PUSH
PUSH
PUSE
LXI
MVl
CALL
POF
POP

Aa s

,FCB
»REALF
LoS

SOOI o

POP B
RET

* JRITEREC -~ WRITE A SINGLE RECORD TO DISK *
WRITEREC PUSH 3

t PUSE T
PUSE &
LXI L,FCB
MV I C,WRITEF
CALL BDOS
POP B
POP r
F POP B
RET

* IMASET ~ SET IMA ATLTRESS
* CALL WITH ADDRESS IN EHL
*# RETURN WITH HL = HL + 128 *

LMASET PUSH PSW

PUSH B

PUSH L

PUSH B

XCHG sDE = DMA ADDRESS
MVl C,SETLMA

CALL BLOS

POP g

LXI 3,128 sREALY IMA ATLLRESS FOR NzXT
AL B s TIME

POP D

POP B

pPQP pPS¥

RET

* QPENFILE - OPEN A FILE CURRENTLY ON LOSK *
OPENFILE PUSHE B

PUSH D
PUSH H
{ LXI L,FCB
: MVI C,OPENF
CALL BLOS
POP '
PQP D
POP B
RET

* CLOSPILE ~ CLOSE A FILE CURRENTLY ON DISK *
CLOSFILE PUSH B

g8

.i"........=::;"""‘ﬁ’llllIllllll.lllllllll::::::f

PUSH L

PUSH B

LXI L,FCB
MVI C,CLOSEF
CALL BDOS

POP B

POP L

POP B

RET

* CREATE - CREATE A NEW FILE ON TISK *
CREATE PUSH B

PUSH T

PUSH B

LXI D,FCB
MVI C MAKEF
CALL BLOS
PQP H

POP L

POP B

RET

* LELETE - LELETE A FILE CURRENTLY ON LISK *

LELETE PUSH B

PUSH D

PUSH H

LXI L,FCB
MVI C,DELF
CALL BLOS
POP H

POP D

POP B

RET

* CURDSK - GET CURRENTLY LOGGED DISK *
CURLSK PUSH B

PUSE T
PUSH g
LXI L,FCB
MVI C,CURRNTE
CALL BDOS
POP B
POP T
‘ POP B
RET

* ERROR - ERROR HANLLING ROUTINE
* CALL WITH ACC = ERROR NUMBER *

ST VIS EIDUE TV S W

ERROR

ERRJMP

ERROR1
ERKQRZ
ERRORS
ERROR4
3 ERRORS

ERRORGE

ERROR?

Cnme e =

MOV
MVl
LXI
LAT
DAD
LA
PCHL
NOP
NOP

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

LXxI
JMP

LXI
JMP

LXI
JMP

Lxl
JMP

LXI
JMP

LXI
JMP

LXI

- v w
=1 p

RRJMP-3

W I O

ERRORL
ERRQR2
ERROR3
ERROR4
ERRORS
ERROR6E
ERROR7
ERRORS8

ERRORS

ERROR1Z
ERROR11
ERRORLZ
ERROR13
ERROR14
ERPROR12
TRRCR16
ERROR1?
ERRQOR18

L ,MENERRMG
ERROUT

L,MFLELERR
ERROUT1

D,PERONLYM
ERROUT1

L,INVHEXER
ERROUT1

L,SELELERR
ERROUT1

D,SEQDELER
ERROUT1

C,AMBIGERR

100

7GET ERROR NUMBER
#COMPUTE ERROR VECTOR

;ERROR VECTOR IS IN PC

+MENU SELECTION ERROR

;TOO MANY/FEW DELIMITERS
{PERIQL+LATA ERROR

s INVALIT HEX TLIGIT ERROR
fDELIMITER AT START/EIND

12 OR MORE LEL. SEQUENTIALLY
$NO AMBIGUOUS FILES

3 COLONS NOT PROPERLY PLACED
i IN FILENAME

;TOO MANY/FEW CHAR.
yEEX FILETYPE ONLY
yNO SPACES IN FILENAME

7 NO NON~PRINTABLE CHAR IN FN
yFILE NOT FOUND

¢BEX CHECKSUM ERROR

sLISK REAL ERROR

1CUT OF LIRECTORY SPACE
$START > FINISH ATLRESS

;QUT OF LIR/LISK SPACE

i PARTIAL FILE NOT SAVED

IN FN

i PRINT MENU ERROR MESSAGE

sPRINT ERROR MESSAGE

e

——

JMP ERROUTZ2
ERROR8 LIXI L,COLONERR
JMP ERROUTZ
ERROR9 LxI D,FNCHARER
JMP ERROUT2
ERROR1Q LXI L,HEXFTERR
JMP ERROUTZ2
ERROR11l LXI L,SPFNERR
JMP ERROUTZ
ERKOR12 LXI D,NPRTERR
JMP ERROUTZ
ERROR13 LXI L,FNFNTERR
JMP ERROUT1
ERROR14 LXI L ,CKSUMERR
JMP EKROUT3
ERROR15 LXI D,DSKERDERR
JMP ERRQUTS
ERROR16 LXI L,CIRSPERR
JMP ERROUT
ERROR17 LXI L,SGFAERR
JMP ERROUT1
EERQOR18 LXI D,DDSPCERR
JMP ERROUT3
ERROUT CALL PRINT sPRINT ERROR
CALL DELAY i LET USER READ ERRCR
JMP MENU s START OVER
ERROUT1 LXI SP,STACK yRE-INIT. STACK
CALL PRINT y PRINT ERROR
CALL CELAY
LDA MENUFLG ;RECALL MENU CHOICE
JMP MENU1 RESTART CURRENT OPTION
ERROUT2 CALL PRINT y PRINT ERROR
CALL DELAY
RET sBACK TO CALLER
ERROUTS CALL PRINT fPRINT ERROR

CALL DELAY

121

CALL
Jup

HOSTLONE
MENU

yTELL MLS LONE

* DELAY - APPROX. 1-2 SECOND LELAY FOR USER TO SEE ERROR

*x

r MESSAGE BEFORE MENU IS REPRINTEL *

TELAY PUSH
PUSH
PUSH
PUSH
MVI
LX1
IELAYIN LXI
DELAYOUT DAD
JC
LCR
JNZ
POP
POP
POP
POP
RET

CRLF MVI
CALL
MVI
CALL

RET

-

E
& RETURN
CALL WITH

#* 3% 3 3 3

ENTER PUSH
PUSH
PUSH
LXI
LLAX
CPI
JC
ANI
DAD
LCAT
TAT
DAD
Je

ENTER1

ENTER1S5

* CRLF ~ CARRIAGE RETURN & LINE

vITH

c
LE

PSW

B

L

H

3,15
L,-1
H,39ECH
D
LELAYOQUT
B
DELAYIN
H

L

B

PSW

yOUTER LOOP INITIALIZATION
;LCECREMENT BY SUBTRACTION

 INNER LOOP INITIALIZATION
yBL = 8L - 1

;CELAY LCONE, BACK TO CALILER
FEED UTILITY =

E,CR iPRINT CARRIAGE RETURN
CONSOUT

E,LF 7 THEN & LINE FEEI
CONSOUT

NTER - GET A HEX INTEGER FROM THE CONSOLE BUFFER

HL 16 BIT BINARY LATA

MAX NUMBER OF CEARACTERS TO INPUT
CONSOLE BUFFER POINTER FOR START OF
CONVERSION PROCESS *

PSW +SAVE A, BC, DE

B

D

H,2000H INIT. CATA AREA

I iGET LATA FOR CONVERSION
‘A ;1S IT 0-G87?

ENTER15 7 YES

OrLFH i NO ~ FORCE TO UPPER CASE
;! +SHIFT PREVIOUS DATA LEFT
B 7 4 BITS

q

d

ENTER3 ;IF OVERFLOW, PRINT ERROR

122

i"

cPI
JC
Cpl
JNC
CPI
JC
ATl
ENTERZ2 ANI
ORA
MOV
DCR
JZ
INX
JMP
ENTERS MVI

JMP
ENTER4 POP
POP
POP
RET

iIS IT o-F?

ENTER3 3 NO ~ ILLEGAL CHARACTER

‘F el ;IS IT > F?

ENTER3 7 YES ~ ILLEGAL CHARACTEFR

‘A’ ;LEGAL ~ I3 IT A-F?

ENTER2 i NO = IT°S 2-9

9 ;ATD CONVERSION FACTOR

@FH ; ISOLATE 4 BITS

% R tMERGE WITH PREVIOUS LATA

c ;COUNT CHARACTERS ENTERED

ENTER4 tEXIT IF C = 9

r ; BUMP BUFFER ALLRESS

ENTER1 ;GET ANOTHER HEX INTEGER

4,4 $PRINT ILLEGAL CHARACTER
; ERROR

ERROR ;START OVER

% ;RESTORE REGISTERS

PSW

* CONSIN = CONSOLE INPUT ROUTINE
* DOESN’T RETURN UNTIL INPUT IS RECEIVED *

CONSIN PUSH
PUSH
PUSH
MVI
CALL
POP
POP
POP
RET

* CONSQUT ~ CONSOLE OUTPUT ROUTINE
% ENTER WITE CHARACTER IN E *

CONSOUT PUSH
PUSH
PUSH
PUSH
MVI
CALL
PQP
POP
POP
PQP
RET

B

T
B

C,CONIN yGET CHARACTER
BLOS

¢
L
B

PSwW sSAVE REGISTERS

B
D
H

¢,CONOUT yQUTPUT CHARACTER
BDOS

H
T
B

pPSw

ySAVE REGISTERS

tRESTORE REGISTERS

;RETURN TO CALLER WITH
7 CHARACTER IN A

JRESTORE ALL KEGISTERS

iBACX TO CALLER

103

% CONSTAT - GET CONSOLE INPUT STATUS

: RETURNS WITH A

CCNSTAT PUSH
PUSH
PUSH
MYI
CALL
POP
POP
POP
RET

BUFFRL - REAL CONSOLE INPUT INTO BUFFER POINTEL TO BY LE

= @@B IF NO CHARACTER WAITING
= ¢FFH 1F CHARACTER IS WAITING *

B ySAVE REGISTERS

L

d

C,CONST yGET STATUS

BLOS

H 'RESTOREZ REGISTERS
T

B

B = COUNT OF CHARACTERS INPUT

x
* RETURN WITH TE = BUFFER START ALLRESS + 1
-3
x

BUFFRL PUSH
PUSH

BUFF1 LX1
CALL
LXI
PUSH
MVI
CALL
CALL
PoP
INX
LIAX
ORA
JNZ
JMP

READONE MOV
POP
POP
RET

* BUFFRL1 ~ REAL CONSOLE INPUT INTO BUFFER POINTEL TO BY IE
RETURN #ITH LE = BUFFER START ALLRESS + 1

*
%*
*
*
A

BUFFRI1 PUSH
LXI
PUSH
Mvi
CALL

ALL OTHER REGISTERS (A, HL) UNCHANGEL *

PSW ;SAVE A, HL

H

L,PROMPT ;SENT PROMPT TO CONSOLE
PRINT

L ,CONBUFF ;POINT TO CONSOLE BUFFER
T ; SAVE IT

C,READCON SREAD CONSOLE INPUT
BLOS

CRLF

D ;POINT TO CHAR. COUNT

>

T ;GET COUNT

A ;IS COUNT = 27

REATONE i NO, RETURN TO CALLER
BUFF1 i YES, TRY AGAIN

B,A JRETURN WITH B = COUNT
S JRESTORE A, AL

PSW

B = COUNT OF CHARACTERS INPUT
A =00 IF COUNT = O

= QFFHE IF COUNT > ¢
HL UNCEANGED *

B tSAVE HL
L,CONBUFF sPOINT TO CONSOLE BUFFER
D i SAVE IT
C,REALCON y REAL CONSOLE INPUT
BLOS
104

CALL
POP
INX
LDAX
ORA
JZ
MOV
MVI
JMP

KEADONEL MOV

¥ O3 ¢ 3 6 M 3 3¢

v

(]
s
-4

SCANL

SCANZ

CNTLEL

POP
RET

CRLF

g yPOINT TO CHAR. COUNT

D yGET COUNT

A yIS COUNT = 87

REATONEL i YES, RETURN TO CALLER
B,A ySAVE CHAR COUNT

A,2FFH 3sCOUNT > @

REAILONEL-+1

B,A RETURN WITH B = COUNT
g RESTORE A, HL

SCAN - DELIMITER SCAN OF CONSOLE INPUT BUFFER

(SPACES ANL COMMAS ARE LEGAL LELIMITERS)
ALSO CHECKS FOR ESCAPE AND “?° KEYS

DE = CONBOFF + 1

A = NUMBER OF LELIMITERS TO LOOK FOR

CALL WITH

PUSE
PUSH
PUSH
MOV

XCHG
MOV

CALL

CALL
INX
MOV
CPI
J2
CPI
JZ
CFI
JZ
CPI
JZ
LCR

JZ

JMP
LCR
JMP

SCANLONE XRA

SCAND1

CMP
POP

RETURN WITH CARRY SET IF MCRE OR LESS LELIMITERS

THAN SPECIFIED

A = GARBAGE
OTHER REGISTERS UNCHANGEL *

B
L
H
B,A

cC,M
SCNENDEL

SCANLLEL
-4

A,M
SPACE
CNTDEL
camMMA
CNTLEL
BSC
SCANESC
l?'
8UESTION

SCANLONE
SCAN1

B

SCANZ

A&

B

g

i SAVE REGISTERS

tGET DELIMITER COUNT

7EL = CONBUFF + 1

iGET CHARACTER COUNT

s SCAN FOR DELIMITERS AT

7 START ANL ENL OF INPUT
ySCAN FOR SEQUENTIAL CELS.
yGET CHARACTER

yIS IT A SPACE?

s YES, DEC DSLIMITER CCUNT
IS IT A COMMA?

3 YES

yIS IT AN ESCAPE CHARACTER?
y YES, ESCAPE FROM OPTION
+IS 1T A QUEST FOR HELP?

7+ YES, PRINT DATA FORMATS
;NONE QOF THESE, CHECK NEXT
7 CHARACTER

+NO MORE CHARACTERS TO CHECK

; LTECREMENT LELIMITER COUNT
7 LOOK FOR ANOTHER DELIMITER
'SEE IF B = @

i RESTORE REGISTERS

105

-

>

¢
POP L f
POP B ;
RET ;
SCANESC LIA MENUFLG ;1P HOST COMMANT THEN
CPI NESTCML ; NO ESCAPE TO MLS
Jc MENT j
LLA SYSSTAT :SEE IF HBOST IN CONTROL
ORA A
JZ SCNESC1 HOST IN CONTROL
CALL CNTRLCK SMIS IT IN CONTROL
RRC
INC MENU | ; NO ABORT :
SCNESC1 MVI L,°Q ; ABORT ?
CALL MLSCMI g
XRA A ;CLEAR SYSSTAT FLAG, HOST ;
STA SYSSTAT i NOW IN CONTROL
JMP MENT RETURN TO MENU
QUESTION LXI D,FORMIMSG ;PRINT DATA FORMATS ANL
CALL PRINT ; RETURN TO CURRENT OPTION
QUESTL CALL CONSTAT ;WAIT FOR RESPONSE TO
RRC ; CONTINUE
JINC QUEST1
CALL CONSIN
LXI T, FMIMSG1 ;CONTINUE FORMAT MESSAGE
CALL PRINT
QUEST2 CALL CONSTAT
RRC
INC QUEST2
CALL CONSIN
LIA MENUFLG
JMP MENU1 ;BACK TO OPTION
CNTRLCK LXI D,ABORTMSG ; MDS IS - PRINT ABORT QUERY
CALL PRINT
CNTRL1 CALL CONSTAT ;WAIT FOR RESPONSE
R
INC CNTRL1
CALL CONSIN GET RESPONSE
ORI 208 ;FORCE IT TO LOWER CASE
CPI y’ ABORT MLS CONTROL?
Jz CNTRL2 i YES
XRA A i NO, CLEAR A
RET
CNTRL2 MVI A ,OFFH i SET A
RET

* SCNENLEL - CHECK FOR LELIMITERS AT FIRST & LAST CHARACTER
POSITIONS IN CONSOLE INPUT BUFFER
* CALL JITH BUFFER COUNT IN C *

106

SCNENLEL PUSH B iSAVE BUFFER COUNT
INX " ;CET FIRST CEARACTER
MOV ALM
CPI SPACE +1S IT A SPACE?
; J2z SCN3PC1 ; T3S, ERROR
3 CPI COMMA ;IS IT A COMMA?
f INZ SCNSPC2 i NC, CONTINUE TO ENT
; SCNSPC1 MVI A,5 ; ERROR
JMP ERROR
SCNSPC2 LCR c ;AT BUFFER ENL YET? !
JZ SCNSPC3 ; YE3
INX g ;i NO
JMP SCNSPC2 i LOOP
SCNSPC3 MOV A LM {GET LAST CHARACTER
CPI SPACE }A SPACE?
AyA SCNSPC1 i YES, ERROR
CPI COMMA ;A COMMA?
JzZ SCNSPC1 ; YES, ERROR
POP B ;RESTORE BUFFER COUNT
LXI B,CONBUFF+1 ; AND POINTER TO IT
RET
* SCANTCLEL - SCAN CONSOLE BUFFER FOR 2 OR MORE SEQUENTIAL
DELIMITERS *
SCANLIEL PUSE B iSAVE BUFFER COUNT
LRA A $INIT. FIRST LELIMITER FLAG
STA FRSTDEL
STEL1 INX g ;GET CHARACTER
MOV ALM
CPI SPACE } SPACE?
Jz LELCK ; YES, FIRST LELIMITER?
CPI COMMA ; COMMA?
Jz DELCK } TS, FIRST TELIMITER?
ICR ¢ ;IF C = @ THEN LONE
JzZ SCELINE
XRA A ;RESET FLAG
STA FRSTIEL
: JMP STEL1 ; LOOP
; TELCK LDA FRSTDEL ;FIRST DELIMITER?
ORA A
INZ LELCK1 ; NO, A=1 - ERROR
INR A ; YES, SET FRSTDEL FLAG
STA FRSTIEL
: TCR c ;SEE IF LONE
5 Jz SDELDNE
: Jmp STEL1 7 NO, LOOP
LELCK1 XRA A
STA FRSTDEL
MV 1 A,6
JMP ERROR ;PRINT ERROR

197

SDELDNE

CALL

*
%
*
*
*
*

CKPERIOD PUSH

CKPER1
PEKFNI

NOEKR

CKIONE

*
*
P
%
*
%*
*
*
P
*
*
™
#*

PCP
LXI
RET

VITEH

RETURN WwITH A

PUSH
PUSH
XCHG
MOV
MOV
INX
MoV
CPI
JZ
LCR
JZ
JMP
MOV
CPI
JZ
MYTI
JMP
MVI
JMP
XRA
POP
POP
POP
RET

CALL wITH TILE
RETURN WITH B

L‘“—:

B '
H,CONBUFF+1 3 ANT POINTER TO IT

RESTORE BUFFER COUNT

CKPERIOD - CHECK FOR A PERIOL ANYWHERE IN INPUT

LE CONBUFF + 1

¢@ IF NO PERIOL FOUNT
QFFH IF A PERIOD ONLY
@FO0H IF A PERIOL + TATA

OTHER REGISTERS UNCHANGEL *

B iSAVE REGISTERS
r
H
+EL = CONBUFF + 1
c,M 7C = CHARACTER COUNT
L,M L = CHAR. COUNT ALSO
B yGET CIARACTER
A,M
PERIOL 7 IS IT A PERIOQL?
PERFND i YES
c 7 NO, ANY MORE CHARACTERS?
CKLONE 3 NO, CHECK LONE
CKPER1 i YES, TRY AGAIN
A,L sRECALL ORIG. CHAR. COUNT
1 yONLY A PERICI?
NOERR » Y85, NO ZRRCR
A,QF0d ;y PERIOL + TATA IS ILLEGAL
CKLONE+1
A,OFFH y PERIOD ONLY INDICATION
CKLONE+1 :
A +CLEAR ACC., NOT FOUNI
B +RESTORE REGISTERS
L
B

GET4BIN ~ GET 4 OR LESS HEX INTEGZRS FROM THE rONSOLE

BUFFER ANL CONVERT THEM INTO 16 BIT _INARY LATA
(6O INTO BUFFER, GC TO DELIMITER IF ONE EXISTS
OR TO BUFFER ENL, ¥BICHEVER OCCURS FIRST:

BACK UP NUMBER OF CHARACTERS SPECIFIEL RY
CALLER OR TO LELIMITER OR BUFFER+1, CONVERT

TO BINARY ANI RETURN)

START OF CONVERSION POINTER (AT A
DELIMITER OR THZ BUFFER COUNT)

NUMBER OF CHARACTERS LEFT IN BUFFER

C = NUMBER OF CHARACTERS CONVERTEL
DE = END OF BUFFER OR DELIMITER
HL = 16 BIT BINARY LATA *

108

3GET 4 CHARACTERS MAX
yBE SURE BACKUPL INST IS
» MVI A,4

+BL = START OF SEARCE
'GET CHARACTER

315 IT A SPACE?

y TES

;IS IT A COMMA?

s TES

{MORE CHBARACTERS IN EUFFER?
7 NC

;NONE OF THESE, TRY AGAIN
sPOINT TQO BUFFER ENL + 1
7SAVE LELIMITER ALLRESS
+BACK UP 1

tAT BEGINNING OF BUFFER?
¢ NO

$ARE WE AT A SPACE?

? YES

tARE WE AT A COMMA?

i YES

i CECREMENT CHARACTER COUNT
+BACK UP 1 AGAIN

+C = @ FINALLY

iPOINT TO FIRST CHARACTER
i FINALLY GOT TEERE
{COMPUTE NUMBER OF BACKUPS

?DZ = CONVERSION START ADIR
+LO CONVERSION

+IE = TELIMITER ALIRESS
} DECREMENT CHAR. COUNT

JAT BUFFER+1 YET?

+IF Z = 1 THEN AT BUFFER+1

) ELSE Z = ©
LIMITEL TO TWO CHARACTERS

¢ET4BIN MVI C,4
MOV A,C
STA BACKUP1+1
GET41 XCHG
GET4LOCP INX g
MOV A,M
CPI SPACE
JZ BACKUP
CPI COMMA
J2 BACKUP
ICR B
Ja BACKUPO
JMP GET4LOQP
BACKUPG INX H
BACKUP PUSH q
DCX H
CALL BUFFTST
JZ BACKUPOL
Mov A,M
cPIl SPACE
JZ BACKUFPO1
CPI CoOMMA
JZ BACKUPO1
LCR ¢ :
INZ BACKUP+1
JMP BACKUP1
BACKUPC1 INX H
BACKUPL MVI A,
SUB C
MOV C,A
XCHG
CALL ENTER
POP L
DCR B
RET
BUFFTIST PUSH H
PUSE D
LXI T,CONBUFF+1
MOV A,L
cMp E
POP L
POP |
RET
* GET2BIN - SAME AS GET4BIN BUT
* MAX
3SAME ENTRY PARAMETERS
: RETURNS WITHE L = 8 BIT BINARY L[ATA

OTHER REGISTERS AS IN GET4BIN *

199

GET2BIN MVI
MOV
STA
CALL
MYI
STA
RET

* MLSOUT - HOST

MD30UT PUSH
PUSH
PUSH
MOV
MISOUT1 MVI
ouT
IN
ANI
CPI
JNZ
MOV
ouT
CPI
JZ
XONCK CALL
RRC
JNC
IN
XCNDN PCP
POP
POP
RET

* CALL WITH & =

“DSCMD PUSH
MVI
CALL
pPCP
CALL
RET

c,2

A,C
BACKUP1+1
GET41

a,4
BACKUP1+1

OUTPUT TO MLS

* CALL WITH CHARACTER IN A *

B

T

H

A,10H
MSTATPT
MSTATPT
@CH

@cH
MDSOUT1
A,C
MCATAPT
XON
XONIN
MLSTAT

XONCK
MCATAPT
1

T

B

COMMANT *

PSw
A ,855H
MISOUT
PSwW
MISOUT

* MLSCMI - SENL COMMANL TO MLS

;TWO BACK-UP’S ONLY
7 MOLIFY GET4BIN COLE

yRESTORE GET4EIN CCLE

ySAVE REGISTERS

7SAVE CHARACTER
{RESET SIO0 INT BIT

yGET SIQO STATUS

;CHECK FOR BOTH LCTR & TXE
3 MUST HAVE BOTH

+LOCP TILL READY

s SENL CHARACTER

;IF XON, DON'T WAIT FOR

7 CONFIRMATION

yNOW WAIT FOR CONFIRMATION

7 FROM MILS

fGET IT TO RESET SIO FLAGS
+RESTORE REGISTERS

ySAVE COMMAND
' NEXT CHAR. WILL BE CML

+SEND COMMAND

* MDATAOUT -~ SEND USABLE DATA TO MDS

* CALL WITH A =

MLATAOUT PUSH
MVI
CALL
POP

e —

CATA *

PSv
A,OFFB
MLSOUT
pPsv

110

+SAVE TATA
INEXT CHAR. WILL BE DATA

+SENC TATA

| PUSH
r CALL
[POP
. RET

* HOSTRIY -
*

BOSTRDY MVI
CALL
MVI
CALL
RET

*

HOSTIONE MVI
CALL
RET

* MPDSIN - HOST INPUT FROM MIS

PSW
MLSOUT
PSwW

A,08H
MISOUT
A,00H
MDSQUT

A,’0°
MDS5 CMD

#* RETURNS WITH CHARACTER IN A,

MISIN PUSH
PUSH
PUSH
CALL
IN
CPI
JZ
CPI
Jz
JMP

MCSQUIT MVI
CALL

i CALL
IN
XRA
STA
STA
MY I
CALL
JMP

MDSINZ MVI
CALL
CALL
IN
PUSH

R

E

D

H
MISINRIY
MDATAPT
@FFHE
MLSINZ
2558
MLSQUIT
MLS INLNE

A ,XON
MDSOOT
MISINRLY
MCATAPT
A
SYSSTAT
MISRLYF
A,XON
MISOUT
MENU
A,XON
MISOUT
MISINRLY
MDATAPT
PSW

111

i SAVE IT

+RESTORE LATA

HOST REALY TO RECEIVE RETURN LATA FOR CURRENT
OPTION *

s NEXT CHAR. IS RDY FLAG
ySENL REALY FLAG

* HOSTLCONE - HOST LONE WITHE ITS PART IN CURRENT OPTION,
IS RETURNING TO MONITOR *

s NEXT CHAR. IS LONE CMNT

OTEER REGISTERS RESTORED *
ySAVE REGISTERS

JANY INPUT WAITING FROM MIS?
i TES, GET DATA TYPE

7IS IT LATA?

» YES, GET IT

yQUIT CMD?

; YES

7 NO, MIS MUST HAVE

i SIGNALLED IT’S READY

7+ FOR INPUT

1CONFIRM RECEIPT

i RESET FLAGS

;CONFIRM RECEIPT OF ‘Q°

;NOW BACK TOQ MENU
ySEND CONFIRMATION

sWAIT FOR TCATA
y THEN GET IT
y SAVE IT

MVI A,XON 3 CONFIRM AGAIN

CALL MDSOUT

POP PSW RESTORE LCATA & REGISTERS
POP B

POP D

POP B

RET

* MDSINRDY - CHECK FOR INPUT FROM MDS, LOOP TILL THERE IS *

MISINRLY CALL ESCK iCHECK FCR ESCAPE
CALL MDSTAT yGET STATUS
RRC
JNC MLSINRLY +NO CHARACTER WAITING, LOOP
RET yCHARACTER WAITING

* MLCSININE ~ SET MLS REALY FOR INPUT FLAG *

ML3INDNE MVI A,XON +CONFIRM IT
CALL MLSOUT
CGALL MLSINRLY

IN MDATAPT
MVI A,0FFH ;SET MIS REALY FLAG
STA MLSRLYF
MV AL,XON ;CONFIRM RECEIPT CF DATA
CALL MISOUT
POP g ;RESTORE REGISTERS
POP D
POP B
RET $BACK TO MIDSIN CALLER
* ESCK - CHECK FOR ESCAPE COMMAND FROM KEYBOARD
* IGNORE ALL OTHER INPUT *
ESCK CALL CONSTAT ;CHECK FOR INPUT
RRC
RNC ; NONE
CALL CONS IN ;IS IT ESCAPE?
CPI ESC ;IS IT ESCAPE?
Jz ESCK@21 3 NO
MVI E,BXSPCE $TON’T PRINT CHARACTER
CALL CONSOUT
RET
ESCK@1 LA SYSSTAT ;GET SYSTEM STATUS
ORA A
Jz ESCK1 {HOST IN CONTROL
CAéL CNTRLCK ;SEE WHO IS IN CONTROL
RR
INC MENT ; NO ABORT
ESCK1 MVI A,°0° ;i YES, SENL ESCAPE CML
CALL MLSCMD i TO MDS

112

XRA
STA
JMP

*®
*
*

MLSTAT XRA
00T
IN
ANI
RZ
MV1
RET

CALL wWITH

%*
%
*
%*
* RETUENS
*
CN¥T16 PUSH
PUSH
PUSH
INX
INX
INX
MVI
CNVT161 MOV
ANI
CPIl
JC
ATI
CNVT1€15 ADI
MOV
LCX
MY 1
ORA
CNVT162 MOV
RAK
MOY
MOV
RAR
MOV
ICR
JNZ
LCR
JINZ

CNVT16 -~ CONVERT

A
SYSSTAT
MENU

MISTAT - GET STATUS OF MILS SIO
RETURNS WITH A = 0@ ANL Z = 1 IF NO CHEARACTER WAITING

HOST NOW IN CONTROL
s NO4 BACK TO MENU

= OFFB AND Z = @ IF CHARACTER WAITING *

A
MSTATPT
MSTATPT
1

L,0FFd

yCHECK SIQ STATUS

yCHARACTER WAITING?
3 NO, RETURN #ITH A = 0O
v YES, RETURN WITH 4 = JFFH

16 BITS BINARY DATA TQ HEX ASCII

HL = ALLRESS FOR 4 CHARACTER ASCII QUTZ2UT

STRING

BC = 16 BIT BINARY DATA
REGISTER PAIRS UNCHANGEL

A = GARBAGE *

CNVT1615
?
‘e
M,A
g
E,4
A
A,B

B,A
A,C

C,4

’

E
CNYT162
I
CNVT161

113

+SAVE REGISTERS

» CHARACTER COUNTER
yNEXT 4 EITS

yIS IT A-F?

+ NO

s TES

;FORM ASCII

STORE THIS CHARACTER

+BACK UP THROUGE OUTPUT AREA
sy DOUBLE RIGHT

ySHIFT RIGHT 4 BITS

3 CECREMENT SHIFT COUNTER
y3TILL SHIFTING

s LECREMENT CHARACTER COUNTER
ySTILL CONVERTING

POP
POP
POP
RET

CALL wITH

Y

x

3%

&

* RETURNS

“

CNYT8 PUSH
PUSH
PUSH
INX

MVI
JMP

Qo

gL

C
REG
A =

2eR .-l o e s

T
c

i RESTORE REGISTERS

CNVT8 - CONVERT 8 BITS BINARY LATA TO EEX ASCII

= ALCLRESS FCR 2 CHARACTER ASCII CUTPUT
STRING
= 8 BIT BINARY LATA

ISTER PAIRS UNCHANGEL
GARBAGE *
+SAVE REGISTERS
' 2
NVT161 L0 CONVERSION

* STAR - PRINT A STAR *

STAR PUSH
LXI
CALL
POP
RET

D
L
P
D

+STARMSG yPRINT IT
RINT

;BACK TO CALLER

%%% MISCELLANEOUS MESSAGE ANL LATA STORAGE AREAS #*%x*

SIGNON LB
DB
INSTRUC LB
LB
DB
LB
TB
DB
LE
LB
DB
LB
LB
DB
LB
LB
DB
LB
LB
DB

CR,LF, “ALTOS MLS CONTROL PROGRAM’

,

- VERSION 1.5°,CR,LF,LF, %"

CR,LF, “BASIC AMDS INSTRUCTIONS:®,CR,LF,LF

NN NN N VN

A, TAE PROMPT FOR INPUT OF ILATA IS’

> .”,CR,LF

B. ALL INPUTS MAY BE IN UPPER CR lower’
CASE.’,CR,LF

C. ADDRESS AND DATA INPUTS ARE EXPECTELD”
TO BE IN HEX NOTATION. ,CR,LF

T. TERMINATE INPUTS WITH A CARRIAGE °

RETURN OR LINE FEED.’,CR,LF

”

E. NORMAL LINE ELITING ON INPUT IS 4aS °

“IN_CP/M_ANT MP/M.”,CR,LF

F. FOR ADDRESS INPUTS, TIE PROGRAM ~

‘WILL ALWAYS TAKE THE LAST FOUR OR LESS °
CR,LF,” HEX CHARACTERS ENTEREL: FOR °
‘DATA INPUTS, THE LAST TWO OR LESS.’,CR,LF

’

L4

I'4

G. SOURCES OF COMMON ERROR ARE INVALIL’
92X TLIGITS, TOO MANY OR TOO FEW’,CR,LF
DELIMITERS, ANI ILLEGAL SYNTAX. ,CR.LF

114

MENUMSG LB

SYSMSG DB

MISMSG LB
BOSTMSG DB
NOMENMSG LB
YESMENMG IB
MENERRMG DB
MFCELERR LB

H. IN GENERAL, THE SAME TATA I/0 FORMAT’
AS USED IN DIGITAL RESEARCH’’S’,CR,LF
TIT IS USEL HERE. FOR EXCEPTICNS,’

CONSULT THE USER’’S MANUAL. ,CR,LF

I. A JUESTION MARK ENTERED AFTER THES °
PROMPT WILL CAUSE THE INPUT FORMATS TO°
CR,LF

‘ 3% DISPLAYED. ,CR,LF

’ J. IF THE ESCAPE XEY IS ENTEREL LURING
INPUT THEN THE USER IS RETURNEL’,CR,LF

‘ TC THET MENU.’,CR,LF

° K. FOR FURTHER LETAILS, CONSULT TEE °
USER”’S MANUAL’,CR,LF,LF

“PRESS ANY XEY TO CONTINUE >$%°

rd
’
4
’
’

CR,LF,” ‘

‘ MENU’,CR,LF

‘ BEOST COMMANLS ’

‘ MLS COMMANLS’,CR,LF,LF

A. SUPPRESS PRINTING MEND

’G. LOWNLOAL HEX FILE - LISK TO MIS °
“MEMORY’,CR,LTF

‘B. DO NOT SUPPRESS PRINTING MENU ‘
‘H. UPLOAT MILS MEMORY TO HEX LISK FILE’

CR,LF

‘C. BASIC INSTRUCTIONS ‘
‘l. EXAMINE/SET MLS MEMORY LOCATION(S3)”
CR,LF

‘D. HEXADECIMAL ADD & SUBTRACT ‘

“J. CONTINUQUS SET OF MIS MEMORY‘,CR,LT
E. RETURN SYSTEM CONTROL TO HOST
K. FILL MDS MEMORY WITH SPECIFIED BYTE’

CR,LF)
F. RETURN TO CP/M

‘L. LOCATE BYTE SEQUENCE IN MDS MEMORY”

CR,LF)

‘M, LUMP MDS MEMORY LOCATION(S) TO CONSOQOLE”
CR,LF

’

:N. EXECUTE MIS MEMORY FROM SPECIFIEQ'.CR,LF

LOCATION’,CR,LF,"$~

‘SYSTEM STATUS: $$$$5 IN CONTROL;”
44 MENU SUPPRESSION’,CR,LF, %”
‘MLS 47

‘HCSTS

INog
CR,LF, “INVALID MENU SELECTION’,CR,LF,"$"
CR,LF, TO0 MANY OR TQO FEW IELIMITERS IN~

115

PERONLYM
INVHEXER
SEDELERR
SEQLELER
AMBEIGERR
CCLONEER
FNCHARER

HEXFTERR
SPFNERR

NPRTERR
FNFNLERR
CKSUMERK
LSKRLERR
DIRSPEKRR
SGFAERR

CDSPCERR

CRIVSRR

CNTRLMSG

ABORTMSG
ABORTEDM

EXMSG
EXMSG2

FORMTMSG

‘ INPUT ,CR,LF, ¢’ .
CR,LF, ’PSRIOD ONLY PLEASE !”,CR,LF,)

CR,LF, “INVALIT HEX LIGIT’,CR L*,’$

CR, LF. ‘CaN’ T dAVE A DELIMITEP AT START OR’
’ ENI OF INPUT’,CR,LF, S’

CR, %g “TwO OR MORE LELIMITERS SEQUENTIALLY®

CR,

CR,LF, gmzlcuous FILENAMES NOT ALLOWEL”

CR,LF,

CR,LF, COLON (2) NOT PROPERLY PLACED IN °
FILENANE ,CR,LF, %’

CR,LF, FILEVANE TCO LONG CR TOO SHORT’

CR,LF, (8 CHARS MAX, 1 CHAR MIN)’,CR, L? , 87

CR,LF, me FILETYPES ONLY !'7,CR,LF, ’$

CR, %F, “NQ SPACES ALLOWEL IN FILENAME

CR,LP,

CR,LF, "NON-PRINTABLE CIARACTERS NOT *
"ALLOWEL IN FILENAME’,CR,LF,’ $7

CR,LF, 'FILE NOT FOUND’ .ca LF,

CR,LF, "HEX CHECXSUM ERROR,CR,LF, ‘%’

CR,LF, TISK REAT ERROR’,CR,LF L8

CR, LF. ‘OUT OF LIRECTORY SPACE’ J,CR,LF, 5%’

CR, LF, "START ALLRESS CANNOT BE GREATER ~
“THAN FINISH ALLRESS’,CR,LF, %’

CR,LF, OUT oF DIR?CTORY OR DISK STORAGE °
"SPACE”,CH,LF, PARTIAL FILE WAS NOT ’
SAVET ",ca LF

CR,L¥, “NARNING - ONLY CURRENTLY SELECTED
LISK WILL BE USEL, INPUT IGNOREL !°

CR,LF, $"

CR,LF, "MDS IS IN CONTRCL, CAN’’T CONTINUE’
° UNTIL QPTION “‘B’” 1S SELECTEL” CR,LF, %"

CRyLF, "ABORT MIS CONTROL (Y/N)? §°

CR,L¥, MDb CONTROL ABORTED, H0ST IN
“CONTROQL. " ,CR,LF, "3’

CR,LF, ‘WILL CONSOLE BE RECEIVING LATA
“FOR DISPLAY FROM THE MDS (Y/N)2%°

CR,LF,LF

*"MLs IS IN CONTROL, HCST MAT REGAIN
“CONTROL ONLY BY TYPING THE ESCAPE XEY !’

CR,LF, Lz.'$

CR,LF,” INPUT PARAMETER FORMATS ARE AS :

FOLLOWS :+‘,CR,LF

MENU >X ’

X IS OPTION SELECTION (A~N)’,CR,LF
BEXARITH SKXXXX YYYY
XXXX 8 YYYY ARE HEX INTEGERS’,CR,LF
IWNLOAT >FILENAME(.HEX) °
(.BEX) IS OPTIONAL’,CR,LF

UPLOAL >FILENAME(.HEX) ",CR,LF

SXXXX YYTY

’

LY N T N S A

116

/
{

DB
LB
DB
LB
LB
DB
LB
LB
DB
TB
LB
DB
LB
LB
DB
IB
LB
DB
LB
I3
LB
LB
IB
DB

LB
DB
LE

DB
LB
I3

%}
LB
FMTMSG1 DB
LB
LB
DB
LB
LB
LB
LB
LB
U8
LB
LB
DB
LB
LB
D3

XXXX & YYYY ARE MDS HEX START AND',CR.LF

SND ADDRESSES FOR UPLOAL’,CE, LF
EXAMINE MLS >XXXX
XXXX IS FIRST MIS HEX ALLRESS TO
k.LF,
EXAMIVE AN SET”,CR,LF
JXXXX YY 22 ‘
XXXX IS5 HEX ADDRESS, YY Is 3EX DATA’
CR’L‘E'
‘AT THAT ATTRESS, 22 IS CARRIAuE RETURN”
CR, LF,

LY Y > B N T O NN

.

or ZZ I3 NEW HEX EATA
CR,LF,”’
’ or 22 1S ".”',cn LF
‘ CONTINUOUS D>XXXX
‘ XXXX IS MIS HEX START ALIRESS FOR
CR,LF, "
° FIRST CHANGE’,CR,LF
>AA BB CC ... ‘
‘ A%E’HEX DATA FOR ENTRY INTO MDS MEMORY”
CR’L »
° (255 ENTRIES MAX, INCLULING TELIMITERS)®
CR,LF

.

.

4

IP ONLY A 7.7 1S TYPEL AFTER TEE’

S
*""PROMPT, THE OPTION IS ENIEL,CR,L¥
° FILL >XXXX YIYY 22 °
° XXXX & YYYY ARE MDS HEX START AND’
CR,LF,
* END ATDRISSES T0 FILL BETWEEN;’,CR,LF
22 15 HEY DATA TQ USE FOR FILL’,CR,LF
CR,LF, "PRESS ANY KEY TO CONTINUE >$°
GR,LF,LF)
LOCATE SEQ. >XXXX(YYTTY)
XXXX & TYYY ARE MLS HEX START AND',CR,LF

R,LF
>AA BB ... PP :
ARE UP TO A 16 BYTE HEX SEQUE§CE',CR,LF

TO SEARCH FOR IN MLS MEMORY’,CR,LF
LUMP SXXXX(YYYY) :
XXIX & YYYY ARE MIS HEX START ANE

ACI I 2 v v v v AT N N s

R, LF,

OPPIONAL END ALLRESSES TO LUMP BETWEEN®
%,LF

" EXECUTE SXXXX -

117

-‘-—\zw_

OPTIONAL END ADDRESSES TO SEARCH EETWEEN'

dEXMSG

HEXM3SG1
HEXMSGZ
EXAMSG

EXAMSG]
EXAMSG2
FILLMSG

CSETMSG
EXECMSG
LOCMSG

NOTFOUND
FOUNIMSG
FOUNIMS1
LUMPMSG

LUMPMSG1
LUMPMSG2
DUMPMSG3
MENUPRO1

MENUPROM
PROMPT

FILENAME
DWNLDMSG

TWNIONE
DWNDONE1

UPLLMSG
UPLLONE
DATAMSG

STARMSG
FCBMSG

SYSSTAT

MENUSUPF

4

XXXX IS MLS HEX ATLLRESS
CR,LF .
IS T0 BEGIN’,CK,LF,LF
‘PRESS ANY KEY 70 CONTINJE %7
CR,LF, “HEX ALT/SUB’,CR,LF, %"
‘SUM = 3544
‘DIFF = 5%°,CR,LF, %"
gg;%g,'EXAMINE/SET “IS MEMORY”

L
qg,LF.'FILL MLS MEMORY LCCATION(S)

+CR,LF, %7

*,CR,LF

CR,LF, CONTINUOUS SET MDS MEMOKY w/0 ~
EXAMINE ,CR,LF, 5"

CKk,LF, "EXECUTE MILS MEMORY FROM SPECIFIEL
ADDRESS'.CR LF, 3"

CR, %F gocawE RYTE SEQUENCE IN MLS MEMCRY”
CR,LF,
CR,LF, “BYTE SEQUENCE NOT FOUND !”,CR,LF, -
CR,LF, "FOUNL STARTING AT MLS ALLRESS *
'$$$$ +CX,LF,
CR,LF, 'DUMP MDS MEMORY’,CR,LF, "%~
765%% 37

3% %
784545955555535584%7

CR,LF, OPTION A = MENU SUPPRESSION, B = °
“NO MENU SUPPRESSION'
CR.§F,'INPUT MENY OPTION &7

Id

\/
n-

FILLNAME $’
CR,LF, DowNLOAr BEY FILE FROM DISK TC MIS’
‘ MEMORI ,CR,LF,

CR,LF, "COWNLOAL COMPLETEL’
MDS START ADDRESS |
$$99H°,CR, LT,
c& LF, UPLOAD (aAVE) MLS MEMORY TO TISK ~

‘HEX FIL ,CR,LF, "3’
CR,LF, UPLOAE 70 LISK SUCCESSFULLY *
COMPLLTED ,CR,LF,
T 85 57
I*$o

9,208,204 ,20H,2@H,220,20H,20H,2¢H
‘dEX",0,0,0,0

,CX,LF
44449 , LAST ADDRESS

-
=

1 7SYSTEM STATUS FLAG
;7 HOST IN CONTKCL = ¢
+ MDS IN CONTRCL =1
1 sMENU SUPPRESSION FLAZ
i @ = NC SUPPRESSION
118

WHERE EXECUTION’

’

MENUFLG IS

FRSTLEL LB
FIRST DY
SECONT LW
SUM Cw
START Dw
FINISH Tw
MLSTATA LS

CONSTATA DS
MCSRLYF IS
FIRSTIME LS
BUFFCNT LS

CURRENT DS
CONTFLG IS

FCB LS
CONEUFF LB

DS
LSKBUFF EQU

ENE

Q Sasoe-

N

O

3€
48

25€
3

STARTER

113

1 = SUPPRESSION
TORAGE FOR MEINU CHCICE
IRST LELIMITEKR FLAG

FIRST NUMBER TO ADD/5U5B
SECONI NUMEER T0 ATLI/SJE
SUM OF HEX NUMBERS
STARTING ADLRESS FOR

7 COMMANL USE

s FINISH ACTRESS ¥Cr

i COMMANL USE

;yTEMP. STCRAGE FOR TATA

7 FROM MIS

yTEMP. STORAGE FOR DATA

i FROM CONSOLE TO MLS

yMLS REALY FLAG

+ OFFH = DONE, @ = NCT [CNE
yFIRST TIME THROUGH REAL
yBUFFER COUNT SPACE
yCURRENT DISK DRIVE
yCONTINUATION FLAG FCR risK
3y REAL OPERATIONS

i D8 = NC CONTINUE

3 OFFH = CONTINUE

+SPACE FOR FILE CONTEROL

s BLOCK

yLEFAULT TO 48 CHARACTE®ERS

+ MAX FOR CONSOLE RUFFER
yPROVIDE FOR 255 CHARACTERS
ySTART OF LISK BUFFER

e e 3k 3R 42 40 o0 o dig e ok ok ke o otk e e e a5 e ok ok o ok o o ke ol e e e e e s e 2 s o e e ok e sk e o o R ol R ok e e ok

&
™
*
oY
*
*
*
%
*
*
*
*

RAM
CHASTAT

CHALATA
CHBSTAT

CHEBLATA
BAULREG
XON

USERIOQ

MCNITOR

AMLS1 - ALTOS MICROCOMPUTER TEVELOPMENT SYSTEM

VERSION 1.3, 28 MAY 16€1
LT. STEPHEN M. HUGHES - AUTHOR

THIS IS TEE MLS MONITOR COLE FOR THzZ AMDS. THE AMIS
USER’S MANUAL SHOULL BE CONSULTEL FOR SPECIFICS NOT
GIVEN IN THE DOCUMENTATION WHICE FOLLOWS.

e o e ok e Ac e o e o AR e ek o e oie e ol o ok o ok ko e Ak ol e ol ol e e R Rk R R R R R ke ke o e e o ek ek

EQU

EQU

EQU
EQU

ORG
JMP
NOP
NOP
JMP

ORG
JMP

ORG
LXI

APPENTIX T

MDS MONITOR SOFTWAR:Z LISTING 5

(MLS CCLE)

LR R L A R B

3
w

5
" ;
sk |

20¢0oH 7 START OF ONBOAKRD RAM
2E4H yCHANNEL A STATUS ANT
i COMMANL/CONTROL PORT
GE3H ;CHANNEL A DATA PORT
QE2H yCBANNEL B STATUS ANT
3 COMMANT/CONTnOL POKT
BE1H yCHANNEL 3 DATA PORT
; (NOT USEr IN TEIS COLZ)
PECH ;PORT FOR SETTING BAUL RATE
3 OF SERIAL PCRTS
211H ;CONTROL Q
0002H y START OF PRCM
PORTSET ySET UP SERIAL PORT ON RESET
USRIO jUSER CALL FOR CCN3OQLE I/C
0038H ST 7 LOCATION

+ RETURN OF CONTRCL TO HOST

-

EXECINE ;USER RST 7 COMES HERE FCr
’
3 AND ONBQARD MONITOR

Q¢4eH tRST 7 + 8
SP,STACK iSET STACK EVERY TIME

120

e L -

XA A

STA QFTION ;RESET OPTION FLAG

CALL HCSTIN i3ET COMMAND FiCM HOST
MONITOR1 ANI 7FH $COMMANT WILL EE 4S31I

CPI “w ;COWNLCAL COMMANL?

J2 DWNLD

CPI ‘v’ ;UPLOAL COMMANT?

JZ UPLT

CPI ‘x’ FEXAMINE/SET MEMORY CMD?

J2 EXAM

CPI ‘c’ ; CONTINUCUS MEMCRY SET CML?

JZ CSET

CPI ‘P’ tFILL COMMANL?

JzZ FILL

CPI ‘L’ y LOCATE SEQ. COMMAND?

JzZ LOCATE

CPI ‘T s CUMP MEMORY COMMANL?

JZ DUMP

CPI ‘B ;EXECUTE MEMORY CMT?

JZ EXEC

JMP MONITOR ;ANYTHING ELSE IS IGNORET
% TWNLL - TOWNLOAL HEX LISK FILE T0 MLS MEMORY ROUTINE
* ROUTINE LOOPS UNTIL A HOSTIONE COMMANT IS
* DETECTED BY THZ INPUT ROUTINE *
LWNLL CALL HOSTIN ;GET NUMEER OF BYIZS TO

; EXPECT

MOV C,A 3C = BYTE COUNTER

CALL GETAILR ;GET STARTING ALLRESS
LWNLL1 CALL HOSTIN ;GET A RYTE

MOV M,A iSTCRE IT

INX 3

ILCk c

INZ DWNLD1 iMORE 3YTES TO GET

JMP IWNLE ;GET NEW ALLRESS FIRST

* UPLL - UPLOAT MIS MEMORY TO LISK HEX FILE =

UPLL CALL GETALLR +GET STARTING ALLRESS
SHLL START
CALL GITADDR yGET FINISH ATDKESS

SELL FINISH
LHLL START

XCHG yCE = 3START ADDRESS
UPLIL1 LIAX I yGET TATA

CALL HLATAQUT JSEND IT

INX D

CALL BUFFCMP iLONE YET?

RRC

JNC UPLD1 i NO

121

RS IR

CALL MISRIY i YES

JMP MONITOR
% EXAM - EXAMINE/SET MENORY |
* LOOPS TILL INPUT LETECTS HOSTIONE COMMANT #
EXAM CALL GETATIR ;GET STARTING ATIRESS
g EXAML MOV A LM 'SEND DATA AT BL AILRESS
P T H0ST
CALL HLATAQUT
CALL J0STIN JGET NEW DATA
MOV M,A ; TEPOSIT IT
INX g
JMP EXAML LOOP TILL HCSTDONE

* CSET - CONTINUOUS SET OF MLS MEMORY
* LOOPS TILL HOSTLONE LETECTEIL *

CSET CALL GETADDR sGET STALTING ATDIESS
CSET1 CALL BOSTIN yGET LATA
MOV M,A 7 LEPGCSIT IT
JMP CSET1 ;LOCP
% FILL ~ PILL [ESIGNATEL MEMORY LOCATIONS WITH SPECIFIET
® LATA *
FILL CALL GETAILDR ;yGET FIRST ADIRESS
SHLL START
CALL GETALLR }GET LAST ALLKESS
SHLD FINISH
CALL HOSTIN yGET LATA TQ FILL #ITH
MOV C,a 7 SAVE 1IT
LELD START
XCBG sLE = START AILARSS
FILL] MOV A,C 3GET FILL TATA
STAX D 3y DEPOSIT IT
INX T
{ cggL BUFFCMP sLONE YET?
! R
' JNC FILL1 s NO, XEEP FILLING
CALL MLSTONE ;7 IES
JMP MONITOR
* LOCATE - LOCATE BYTE SEQUENCE IN MLS MEMORY
SENTS F, T0 40ST IF FOUNT
* SENDS “N° TO HOST IP NOT FOUND *
LOCATE CALL GETAILR +GET START ALLRESS
SELL START
CALL GETAIDA ;GRT FINISE AIDHRESS

SHLT FINISH

122

LXI
MVI
LOCIN CALL
PUSH
LDA
RRC
Je
POP
MoV
INX
INR
JMP
SEARCH MOV
STA
LHLL
XCHG
LXI
SRCH1 LLAX
cMp
JZ
INX
CALL
RRC
JC
JMP
MATCE XCEHG
SHLL
XCHG
MATCH1 DCR
JZ
INX
CALL
RRC

INX
LIAX
CMP
J2
LHLL
INX
LDA
MOV
JMP
FOUND MVI
CALL
LHLT
MOV
CALL
MoV
CALL
JMP

H,CATABUFF
€c,o

HOSTIN

PSW
HSTRDYFL

SEARCH
PSw

M,A

H

LoCIN
A,C
LOCOUNT
START

g,DATABUFF
L

M

MATCH

L

BUFFCMP

NOTFNL
SRCH1

MATCHAIR

C

FOUNT

T
BUFFCMP

NOTFNT
B

L

M

MATCE1
CATABUFF
L
LOCOUNT
C,A
SRCH1
AP
BLATAOUT
MATCHALR
A, g
HLATAOUT
A,L
HTATAGUT
MONITOR

ySTOKE SEQUENCE HZI:E
+CATA COUNTER
yGET SEQUENCE

yIF SET TREN NO MCKE DATA

7 START SEARCH
yMORE DATA
+ STORE IT

yBUMP COUNTER

yGET SEQUENCE COUNT
»SAVE IT

iLE START ATLARESS

yBL START OF SEQUENCE
;GET MLS LATA

I35 TAERE A MATCH?

YES

.
’
.
]

3 NO, SEE IF LONE

yYES, SEQ. NCT FOUND

sNO, THY AGAIN

+HL = FIRST MATCH ADIRESS
y SAVE IT

+RESTCRE TE S BL

yALL MATCEES YET?

i YES, FOUNT SEQUENCE

yLONE YET?

i YES, SEQ. NOT FOUNI
3 NO, LOOK FOR NEXT MATCH

yANOTHER MATCH?

v YES

3 NO, START ALL OVER
yRE~-INIT. SEC. COUNT

;KEEP TRYING
{SEXD FOUND TO HOST

yGET FIRST ALLR. OF MATCH
i SEND IT TO BHOST, M3B FIRST

7 THEN LSB
tALL IONE

NOTFND MVI AN ;SENI NOT FOUNI TO HOST
CALL dADATAOUT
JMP MONITOR

¥ TUMP - LUMP MIS MEMORY TO HOST CONSOLE *

Lymp CALL GETATLR 1GET START ALLRESS
SHLL START
CALL GETADDR yGET FINISH ADDRESS

SHLL FINISH
LHELT START

XCEG yDE = START ADDRESS
LUMPL LLAX T +GET MLS MEMORY LATA

CALL HIATAOUT

INX D

CALL BUFFCMP ;TONE YET?

RRC

JNC DUMP1 v NG

CALL MISRIY v YES

JMP MONITOR

* EXEC - EXECUTE MDS MEMCRY

* PROGRAM 70 BE EXECUTEL ¥AY RETURN MONITOR VIA
* A “RST 7° INSTRUCTION OR A JUMP TO LOCATICN
* @@gen

* H0ST CONSOLE 1/0 IS AVAILABLE AS EXPLAINEL IN
® THE USRIO ROUTINE *

EXEC STA OPTION iSAVE OPTION
CALL GETATLLR ;GET EXECUTION ALLRESS
PCHL ;y GC TO IT

#%% JTILITY SUBROUTINES %%

* BUFFCMP - COMPARE LE 70 FINISH ATLLRESS + 1
IF EQUAL, RETURN A = @FFB

* IF UNEQUAL, RETURN A = 08 *
BUFFCMP PUSH H
PUSH D yLE=CURRENT ALDR TO COMPAKE
LELL FINISH yEL = FINISH ALIRESS + 1
INX H
CMP L
INZ NOCMP 3 NO
MOV A,L y YES, L = E?
CMP ¥
JNZ NOCMP 3 NO
MYI A,QFFR y YES, ADDRESSES ARE EQUAL
POP L
124

i

POP d
REY
NOCMP XRA
POy
POP
RET

yACZRESSES NCT EQUAL

PN 4

* GETATCLR - GET ALTRESS FROM HOST *

GETADDR CALL HOSTIN ‘GET MSB FIRST
MOV H,A
CALL HOSTIN y TREN LSB
MOV L,A
RET
* PORTSET - SET UP SERIAL I/0 PORTS ON EVERY RESET OR
* CALL TO e@ogg *
PORTSET MVI A,?78H ySET RATE TO S50¢ BAUL
ouT BAUDREG
MVI A,01001113E ;SENL CONTROL EYTE
iy 1 STOP BIT
ouT CHASTAT i NO PARITY, & BITS/CEAR
ouT CHBSTAT 7 16x RATE FACTOR
MVI A,2901101118B $SENL COMMANL EFYTE
0UT CHASTAT
oUT CHESTAT
JMP MONITOR

USER TO/FROM HOST CON3OLE [/0 RQUTINE
USER EXECUTEL PROGRAMS IN MLS MEMORY MAY
COMMUNICATE wITH THFE HOST CCNSOL® VIA A CALL
TO LOCATION ©0063H
FOR INPUT FROM TEE HOST CONSOLE, CALL #ITH
REG. C =1 - CHARACTER WILL B8X RETURNEL IN A
FOR OUTPUT TO ®OST CONSOLE, CALL #ITH THT
CHARACTER IN A ANL REG. C =2
TO CHECK THE FOR HOST INPUT, CALL ¥ITH
REG. C = 3 - RETURNS A = @@ I7 NO INPUT HAS BEEN
RECEIVEL FROM THE HOST; A = 2FFH IF INFUT IS
WAITING
IFC < 1, 2 or 3 THEN ROUTINI RETURNS WITH C = @FFB

USRIO

% 4 2 3¢ H 4t 3 4t 3 % 3 3t 3¢
)

USRIO PUSH PSw

MOV A,C ySEE IF INPUT OR OUTPUT
CPI 1
JZ USRIN
CFPI 2
JZ USROUT
CPI 3 sWANT STATUS ?
CZ HOSTAT y YES, GET IT
125

1

B

' ILLEGAL COTE

;TELL HOST TO SENT INPUT

yGET INPUT
+ RETURN WITH [T IN A

sSENL CJARACTER TO HOST

* RETURNS CONTROL TO ECST IF A RST 7 I3 EXECUTEL *

ySEE [F THE EXECUTZ CPTION

7 #AS IN EFFECT WdZN CONTROL
WAS TRANSFERREL HERE

NO, HOST IN CONTRCL

YES, GIVE 0ST CONTROL

-e Wwe we =

MV I C,0FFH
RET
USRIN CALL MLSRIY
POP PSW
CALL HOSTIN
RET
USROUT POP PSW
CALL HIATAQUT
RET
* EXECDNE - THIS RETURNS USEZR PRCGRAM TO MONITOR AND
EXECINE LIA OFTION
cPl ‘B’
INZ MONITOR
CALL MLSTONE
JMP MONITOR

® HCSTIN - GET INPUT FRCM HO3T &

HOSTIN CALL GETCHAR
HOSTIN1 CPI 554
J2 HOSTCML
CP1 @FFH
JZ HOSTLTA
JMP HOSTRIY
HOSTCML CALL aETCHAR
JMP MONITOR1
HOSTLTA CALL SETCHAR
RET
HOSTRDY CALL GETCHAR
MVI A,2FFH
STA HSTRILYFL
RET
GETCHAR CALL HOSTAT
RRC
JNC GETCEAR
SETCHAR1 1IN CHATATA
PUSH PSW
MVI A,XON
CALL HOSTOUT
POP PSw
RET

* HOSTOUT - SENT TCATA TO HOST *

BOSTOUT PUSH
CALL

PSW
HOSTAT

126

INTERPRET TYPE OF INPUT *

sGET INPUT
+IS IT A COMMANL?

s 1S

y»UST BE HOST REALY FLAG
sGET ACTUAL COMMANT

v+ GO TO MONITOR
yGET LATA
7 RETURN TO CALLER WITE IT
yGET READY FLAG
7 SET FLAG IN MLS

IT TATA?

F0R DECCDE

s RETURN TO CALLER

yLOOP TILL CHAR. IS WAITING
tGET LATA

yCONFIRM IT

;ANYTHING FROM HOST? (HOST

W

RRC
JNC
CALL
CALL

HCSTOUT1 IN
ANI
JZ
POP
00T
CPI
RZ
CALL
RRC
JNC
IN
RET

XONCE

* HOSTAT - HOST

HOSTOUT1
SETCHAR
JOSTIN1

CHASTAT
1
HOSTIUT1
pPSW¥
CHADATA
XON
HOSTAT
XONCK
CHADATA

INPUT STATUS *

; HAS PRIORITY)

i NO

; YRS, GET IT

;IF COMMAND, BACK TO MONITOR
i ELSS IGNORE IT

;GET PORT STATUS

7 LOOP TILL REALY TO SENI
+SEND CHARACTER

;CON’T WAIT FOR XON

y CONFIRMATION
yWAIT FOR CONFIRMATION

sGET IT

HOSTAT IN CHASTAT
ANI 2
RZ $NO CHAR. WAITING, RET A=p
MY I A,OFFH ;CHAR. WAITING, RET A=¢FFH
RET
* HTATAOUT - SEND LATA TO HOST IN PROPER FORMAT *
HLATAOUT PUSH PSW ;SAVE TATA
MV I A,OFFH ;NEXT CHARACTER IS TATA
CALL HOSTOUT
POP pSW
PUSH PSW f
CALL BOSTOUT ;SEND DATA
POP pPSW ;RESTORE TATA i
RET f
b * MDSDONE ~ SEND MDS DONE COMMAND *]
i MISLONE MVI A,558 ;NEXT CEARACTER IS COMMANE
f CALL HOSTOUT
MV I A,7Q° i QUIT COMMAND
CALL HOSTOUT
RET

* MDSRDY - MDS IS5 READY FOR INPUT OR OTBER ACTICN BY BOST *

MCSRTY MVI
CALL
MVI
CALL

.--‘iL-""""""""....llllllllllllllll!!!::::f

A,201
HOSTOUT
A,00H
HOSTOOT

127

yNEXT CHAR. IS REALY FLAG

RET

%% TATA STORAGE AREAS =~ IN ONBOARL RAM #¥

ORG
BSTRLYFL LS

MATCHAIR LW

LOCQUNT DS
STAKT Tu
FINISH LW
OPTION DS

LS
STACK LS

DATABUFF DS

RAM
1 1 40ST KEALY FLAG
} @@ = NOT REATY
3 OFFH = RzADY
g ;STORAGE FOR FIRST AILRESS
3 OF MATCH
1 ySTORAGE FOR BYTE COUNT
g ;STORAGE FOR START &
@ 3 FINISH ALLRESSES
1 ;STORAGE FOR OPTION SELECTED
63 {ALLOW FOR 4 32 LEVEL STACX
1
25 i STORAGE FOR LOCATE SEQUENCZ

128

APPENLIX E

MDS MEMORY TEST PROGRAM LISTING

e 38 40 5Kt 00 o 40 a5t e ot e 46l e 0ok 3K e o 4 3 30 e o 3 e o 3 ik kol 465 oo 23 e o8 36 03t e 4 o 3 3 e e ke e 0 8030 6 6 oK

MLS MEMORY CIAGNOSTIC

VERSION 2.5 11 MAY 1981

THIS PROGRAM IS A REVISION CF THE Z-829 MEMORY TEST
PROGRAM PUBLISHEL IN THE FEBRUARY 1981 ISSUE OF

"CR. LOBB’S JOURNAL OF COMPUTER CALISTHENICS & CRTHOLCNTIA"

MOLIFIEL TO OPERATE ON THE ALTOS ANLC MILS SYSTEMS.

REVISIONS MADE BY LT. STEPHEN M., HUGHARS FOE USE IN TEESIS

AS STATEC IN THE ORIGINAL TEXT, "FURTHER RESALE OF TEIS
PROGRAM IS PROBIBITED , UNLESS INCLUDED IN THE BODY OF THE

REVISIONIST S THESIS.

*
*
*
X
*
*
*
*
: THE PROGRAM EAS BEEN TRANSLATEL TO 8¢80 ASSEMBLY CODE aAMT
*
*
*
%*
*
*
*
*

*
*
%
%*

L

3+ 3 3 3 3 # N i 3 o3

340 35 2 3463 3 3e 3¢ 336 2 2% 3 3 28 3¢ 2k 236 e 258 350 2 2k 36 3k ke e ale 38 35 2y e o 3k ofe e 3k ke e 36 ek e ek 3% e e el seale e sk sk 3k %

ORG 40001
USRIO EQU 20e5H
BESPACE EQU @8H
ESC EQU 1BH
CR EQU oTH
LF QU QAH
RCNT EQU 3
WCONT EQU 3
MEM DI
LXI SP,STACK
LXI B,TEND
LXI g,MEMT1
CALL CHA

* TEST STARTS HERE *

CRL¥
H,2000H

MEMB1 CALL

LXI

iUSER I/0 CALL

yASCII BACKSPACE
yASCII ESCAPE COLE
$ASCII CARRIAGE RFTUERN
yASCII LINE FEED

ySEQUENTIAL REAIS
ySEQUENTIAL WRITES

;CISABLE INTERKRUPTS
s INITIALIZE STACK
; FORMAT ADDRESS OF ENL OF TEST

tMAKE OUTPUT PRETTY
yINITIALIZE PAS COCUNT,
3 CUMULATIVE ERROR COUNT

129

SHLD
SHLL
SHLE
LXI

SHLL
LXI

CALL

MEMF
MEMX
MEML

MEME
2, MEMA
DSPLY

* GET TEST MOIE *

MEM@3 MVI
STA
LXI
CALL
CALL
? MVI
| CALL
| CALL
ORI
CPI
J2
CPI
Ji
CPI

JNZ
XRA
STA

| * GET MEMORY

. MEMP4 LXI
CALL
CALL
MOV
ORA
JM
LX1I
PUSH

MOV
SUB
MOV
MOV
SBB
MOV
POP
JP
MEM@45 LXI1
CALL

A'l
MEMP

3 ,MEMN
LSPLY
CRLF
L,
USROUT
USRIN
20y

e
MEMS5
Iil
MEMO4
ﬁt’

MEM@3
A
MEMP

TEST LIMITS ¥

g,MEMB
LSPLY
INTR
A,H

A
MEM@5
g,TEND

-

- -

<]

25

EMT
LY

O X e D
XTI > mo

e

; ANL ATIRESS ‘OR” PROILUCT

;INIT. ADDRESS “ANL’
i PRINT PROGRAM TITLE

+SET CEFAULT = ITEMIZE

+PRINT SELECT I,T OR E
PROVILIE A CUE MARK
iWAIT FOR INPUT

yMAKE LOWER CASE

yIF E, EXIT

iIF I, ITEMIZE ERRORS

yIF T, PRINT TOTAL ERRORS

5 ONLY
yIF NONE, TRY AGAIN
+SET TOTAL ONLY FLAG

yPRINT ENTER FBA

yGET 16 BIT ALLRESS
yIF UPPER BYTE OF FBA I3
3 NEGATIVE, OK TO USE
SO JUMP

AREA
(6L = HL - L2 - C)

e We we W we w

;FBA IS OK, JUMP

;IF FBA IS WITHIN TEST PROGRAM
7 AREA, SET IT TO END OF

OTHERWISE, MAKE SURE FBA
IS NOT WITHIN TEST PROGRAM

T ———e g

LXI #,TENL i PROGRAM & PRINT A WARNING

MEM@S SHLD MEMI iSAVE FIRST BYTE ALTKRESS (FBA)
LXI d,MEMC :P%INT)ENTER LAST BYTE ADDRESS
» (LBA

CALL DSPLY

: CALL ENTR $+..ACCEPT ALLRESS
; PUSH g ;SAVE LBA
’ PUSH ;)
ORA A ;CLEAR CARRY FLAG
PUSH Hq 3 (CLE = CONTENTS CF MEMI
H AND MEMI + 1)
LELT MEMI
MOV T,H
MOV E,L
POP H
MOV AL tMAKE SURE FBA < L3BA
SUB E + (L = EL - DE - C)
MOV L,A
MOV A,B
SBB D
MOV B,A
JNC MEM@Z6 +IT’S 0K, JUMP
POP H ;RESTORE STACK -
POP H
Lx1 d,MEMU yFBA IS >= LBA SO PRINT
CALL DSPLY 7 ERROR MESSAGE
JMP MEMZ4 + ANL ACCEPT ALLRESSES AGAIN

* ALL ALLRESSES OX NCW =*

MEM@6 PQP B tBC = LBA
LXI H,MEMG+5S $CONVERT IT FOR PRINTING
CALL CEHA
PUSH)1 yCONVERT FBA FOR PRINTING
LELT MEMI 7 (BC = CONTENTS OF MEMI
; AND MEMI + 1)
MOV B,H
MOV c,L
POP B
LXI g ,MEMG
CALL CHA
POP)1 ;8L = LBA
PUSH g
MEM@S LXI 3,MEMV sPRINT ABORT INSTRUCTION
CALL DSPLY
POP L ;IE = LBA
INX D 7LBA = LBA + 1

* MAIN LOOP OF MEMORY TEST BEGINS HERE *
* BEGIN A PASS *

131

MEM1 MVI Cc,1
LX1 i,0000H
SHLD MEME

% TEST ALL QOF LESIGNATEL MEMORY
*
*

* YRITE PATTERN INTO MEMORY *

MEM1S MVI B,WCNT
MEM2 LBLT MEMI
CALL USRSTAT
RRC
ce MEM5
PUSE B
MEM21 CALL PATTN
MOV M, A
INX H
MOV A,L
CMP E
INZ MEM21
MOV ALE
CMP T
INZ MEM21
POP B
ICR B
INZ MEM2
MV I B,RCNT
%
* PATTERN.
* POSSIBLE WRITE ERROR.

MEM3 LHLD MEMI
CALL USRSTAT
ORA A
CNZ MEMS
PUSH B
MEM31 CALL PATTIN
MOV B,A
MOV AM
CcMP B
JZ MEM32
MOV M,B

132

yINITIALIZE PATTERN NO.
;INITIALIZE ERROR COUNT

FOR CURRENT PATTERN *

tINIT. WRITES CCUNTEER
yGET FIRST BYTE ALLRESS WO TEST
+CHECK KEYROARTL

s IF CHARACTER WAITING,

7+ INTERRUPT TEST

ySAVE PATTERN AND WRITES
7 COUNTER

; COMPUTE PATTERN FOR THIS
; MEMORY ADDRESS

i <« WRITE IT7

yACVANCE MEMORY ALLRESS
yCIECK IF END OF AREA 70
' TESTEL

7yLOOP, NOT YET

-
RE

;LOOP, NOT TONE YRT
;GET WRITES COUNTER
sWRITE PATTERN OVER ANI OVEkR

y INIT. READS CCOUNTZER

NOW REAL PATTERN BACK FROM MEMORY ANT COMPARE TO COMPUTET
IF DIFFERENCE IS FOUND ON FIRST READ, ASSUME A
IF FIRST REAL MATCHES, COMPARE 16
MORE TIMES LOOKING FOR SOFT REAL ERRORS. *

yGET FBA OF MEMORY TOQ TZEST
;CHECK KEYBOART

i IF CHARACTER WAITING,

7 INTERRUPT TZST

ySAVE PATTERN ANL REALS

7 COUNTER

yCOMPUTE PATTERN FCR THIS
3 MEMORY ALLRESS

1oesSAVE IT

+READ MEMORY

;IS TATA CORRECT?

7 YES, JUMP

yWRITE THE CORRECT TATA

‘‘‘‘‘‘

CALL

JMP

MEM32 SUB

ADD
SUB
AIT
SUB
ATI
SUB
ADD
SUB
ATT
SUB
AL
SUB
ATD
SUB
ALL
cMp
CNZ

MEM35 INX

#* #

#* #

MOV
CMP
INZ
MOV
CMP
JNZ
POP

DCR
JNZ

LONE WITH ONE
OF PASS *

INR
MOV
CPI
JNZ
JMP

ERR1 ;CATA TOESN’T MATCH,

; PRINT POSSIBLE WRITE

7 ERROR AUDIT
MEM35 iTEST NEXT ALLRESS
7 DATA MATCIEL ON FIRST TRY
3 TRY FOR A SOFT REAL ERROR
i BY HITTING THIS AILTRESS 4
; SOLID 16 TIMES

;DOES TATA STILL MATCH?
RR2 i NO, PRINT POSSIELE REAL
3 ERROR AULIT
yADVANCE MEMORY ACDRESS
L yCHECK IF REACHEL ENL OF MEMORY
3 AREA TO BE TESTET
EM31 yNCT DCNE YZT, LOOP
B

EM31 ;NOT DONE YZET, LOCP
sRESTORE PATTERN ANL REAL
3 COUNTER
+READ PATTERN OVER AND OVER

w WIXOrIMeN HMOIXIIIZIIIIIXIZIIZIZITEXX

4
o
4
W

PATTERN, ALVANCE TO NEXT ANL CHECK FOR ENL

c s INCREMENT PATTERN
A,C

11 yCONE YET?

MEM15 i NO, LOOP

MEM6E +AUDIT THIS PASS

CHARACTER WAITING ON KEYBOARL, INTERRUPT TEST ANI CHECK
FOR EXIT REQUEST *

133

MEMS CALL USRIN iGET INPUT
CPI 248 3°C - FREEZE ACTION
J2 DISPSTP
orl 204 {FOLT TO LOWER CASE®
CPI ‘1 ;TYNAMIC SET ITEMIZE
J2 MAKEI
CPI ‘v’ {LYNAMIC SET TOTAL ONLY
Jz MAKET
CPI ‘e
INZ STACKIT ;RESTART TeST IF NOT E
MEMSS LXI H,MEMM ;EXIT FROM TEST, PRINT GOOLEYE
CALL DSPLY
LISPSTP CALL USRIN ;WAIT FOR ANY XEY TO RESUME
; ACTION
CALL B50UT sDON’T PRINT IT
RET
STACKIT LXI SP,STACK ;RESET STACK
JMP MEMB1 {RESTART TZ2ST
MAKEI MVI A,1 $MAKE ITEMIZE
STA MEMP
CALL BSOUT
RET :
MAKET MVI A,D ;MAXE TOTAL CNLY
STA MEMP
CALL BSOUT
RET
]
: LONE WITH PASS THROUGH MEMORY *
: PRINT CONSOLE AUDIT IN THE FO&M:
* PASS: xxxx ERRORS: xxxx CUM. ERRQORS: xxxXx
* (IF CUMULATIVE ERRORS > ZERO THEN AL30 PRINT)
* ANL: xxxx OR: xxxx *
MEM6E PUSH D ;SAVE LBA+1
PUSH Jif ; (BC = CONTENTS OF MEMF
; ANLT MEMF + 1)
LAELD MEMF
MOV B,H
MOV ¢,L
POP B
INX B ;COUNT PASSES
PUSH H 7 (MOV BC TO MEMF)
MOV BE,B
MOV L,C

124

’,, e O S —————— —

. it

SHLL MEMF

PoP H

LXI 3, MEMG1 i CONVERT PASS COUNT

CALL CEA

PUSH B i (BC = CONTENTS OF MEME
) ANT MEME + 1)

LHLT MEME

MoV B,H

MOV c,L

POP o

LXI H,MEMG2 y CONVERT ERROR COUNT

CALL CHA

PUSH q ;7 (BC = CONTENTS OF MEMX

) AND MEMX + 1)
LHLT MEMX

MOV B,d
MOV ¢,L
POP B
LALL MEME
DAD B ;ACCUMULATE ERRORS FCR
; ALL PASSES
SHLD MEMX
PUSH H ;FORMAT CUMULATIVE ZPRORS
POP B
LXI H,MENG23
CALL CHA
MVI A,CR ;SET UP OUTPUT TO SXIP “AND”
; & OR° OF FAILING MEMORY
; ADDRESSES IF NO ERRORS HAVE
; BEEN FOUNT
4 STA MEMG25
p LELD MEMX
3 MOV ALH iMAXE SURE NO ERROERS
! QORA L
J2Z MEM67 i NONE YET, JUMP
MV I A, ;REMOVE THE CAKRIAGZ RETJRN
; FROM THE OUTPUT STRING
, STA MEMG25
: PUSH ;| ; (BC = CONTENTS OF MEMK
; ANT MEMEK + 1)
LELD MEMK
MOV B,H
MOV c,L
POP B
LXI H,MEMG3 ;CONVERT LOGICAL “AND” OF
; FAILING ALDLCRESSES
CALL CHA
PUSH H (BC = CONTEINTS OF MEML

“-o we

AML MEML + 1)
LALD MEML
MOV B,H

135

MEM6E7

A
P
C
XOR

o n

O3 3 3 £ 4 3 4 WO

ERR1

ERR2

ERROR

A=XXXX

MOV
POP
LXI

CALL
LXI
CALL
LDA
RLC
STA
POP
JMP

P=xx

C.L

g

d,MEMG4 $CONVERT LOGICAL “OR’ CF
7+ FAILING ATLTRESSES

CHA

g ,MEMG +PRINT PASS AUTIT

LSPLY

MEMJ ;ROTATE BI™ CROSSTALK SC THAT
i OVER EIGHT PASSES ALL LpIT

MEMJ 3 PATTERNS WILL BE USEL

D RESTORE LBA+1

MEML ;START ANOTHER PASS

ERROR AUTITINC ROUTINE *
CONSOLE OUTPUT OF THE FORM:

C=xx XOR=xx EKROR-TYPE

FAILING ALTRESS

CALCULATET PATTERN

ACTUAL CONTENTS OF ADDRESS

= EXCLUSIVE OR OF PATTERN ANL CONTENTS
(ISOLATES FAILING BIT(S))

PUSH
MVI
STA
MVI
STA
pop
JMP

PUSH
MV1
STA
MVI
STA
POP

PUSH
PUSH
PUSH

PUSH
XRA

MOV

ERROR~TYPE = RD PRESUMED READ (SOFT) ERROR

WT PRESUMEL WRITE (HARLC) ERROR *

PSW ; POSSIBLE WRITS E£RROR
A,

MEMLS

A,'T

MEMLS+1

PSW

ERROR

PSW POSSIBLE REAL ERROR
A,°R

MEMDS

4,°C

MEMES+1

PSW

B 'SAVE ALL REGISTERS LURING
i+ ERROR AUTIT
D
B
PSw
3 ;LOGICAL EXCLUSIVE “OR”™ OF
i CALCULATEI PATTERN ANT
¢ s ACTUAL MEMORY CONTENTS
A
’

136

LX1I B ,MEML4 ;CONVERT “OR° FOR QJUTPUT
CALL CHAB
POP PSW :GET MEMORY CONTENTS ANT
5 CONVERT IT FOR OUTPUT
MOV C,A
LXI H,MEML3
CALL CHAB
MOV c,B ;CONVERT PATTERN
LXI B ,MEMI2
CALL CHAB
POP B ;CONVERT CURRENT MEMCRY ALLRESS
PUSH B
LXI H,MEMI1
CALL CEA
LELL MEME
INX H ; COUNT ERRORS THIS PASS
SHLD MEME
POP L ;GET CURRENT MEMORY ADDRESS
PUSH T
LELD MEMK
MOV A,T 1SAVE LOGICAL “ANL’ COF
7 FAILING ATLTLRESSES
ANA 3
MOV H,A
MOV ALE
ANA L
MOV L,A
SHLT MEMK
LELD MEML -
MOV A, ;SAVE LOGICAL “OR” OF
; FAILING ALLRESSES
ORA B
MoV H,A
MOV 4,E
ORA L
MOV L,A
SHLT MEML
LDA MEMP ;CHECK ITEMIZE ERRORS FLAG
ORA A
JZ ERRO $SKIP PRINT IF FLAG = &
LXI H,MEMD yPRINT ERROR AULIT
CALL TSPLY
ERRS POP H ;RESTORE REGISTERS ANT
POP D 7 RETURN TO MAIN TEST
POP B
RET

* COMPUTE TEST DATA PATTERN FOR GIVEN MEMORY ADDRESS *
*

* CALL WITH HL = MEMORY ALLRESS f

137

poog

]
F
|
:‘
:
[.
t
f
F
E
l

*
x

* RETURN
PATTN

PATTO

PAT1

ZEROS
ONES

PATZ

PAT3

PAT4

PATS

PATE

PUSH
MVI
LX1I
DAD
CAL
CAT
XTHL
NOP
RET
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP
JMP

MOV
RRC
RRC
RRC
XRA
ANI
JZ

XRA
RET
MVI
RET

MOV
RET

MVI
RET

MOV
CMA
RET

MVI
RET

EQU

= PATTERN COUNTER

CATA PATTERN

A

ATTO-3

ot e

PAT1
PATZ
PAT3
PAT4
PATS
PAT6
PAT?
PAT8
PATO
PAT10

A,L

ONES

A,QOFFH

AL,L

A,JAAR

A,L

A,55H

ONES

*

+PATTERN COMPUTATICN
yBRANCH ON PATTERN

i (RESTORE MEM AILLR)

; (BRANCH)

+1 CAMBRIDGE PATTERN

12 ATLLRESS , ,
;3 ALTERNATE 1°S ANL 2°S
;4 ADDRESS INVERSE

+5 ALTERNATES @°S ANI 1°S
;6 ALL ONES

;7 CAMBRIDGE INVERSE

78 ALL 2EROS

39 BIT CROSSTALK

712 BIT CROSSTALE INVERSE

s CAMBRILGE PATTERN

JALLRESS

YALTERNATE 1°S AND €¢°S

s ADDRESS INVERSE

7ALTERNATE @°S AND 175

yALL BITS = ONE

T

PAT? MOV A,L yCAMBRILGE INVERSE

RRC
RRC
RRC
XRA q
ANI 1
Ji ZEROS
JMP ONES
PATS8 EQU ZEROS yALL BITS = ZERO
PATS MOV A,L y5IT CROSSTALK
RAR
JC PATCO1
LTA MEMJ
RET
PATG1 LIA MEMJ
CMA
RET
PAT10 MOV A,L +EIT CROSSTALX INVERSE
RAR
JINC PATS1
LIA MEMJ
RET

* BINARY TO HEX ASCII CONVERSICN, 16 BITS *

*

% CALL HL = ALLRESS FOR 4 CHAR ASCII OUTPUT STRING
* BC = 16 BIT BINARY DATA

#

* RETURNS HL,LCE,BC UNCHANGEL

* A = GARBAGE *

CHA PUSH | ;SAVE REGISTERS
PUSH D
PUSH B
INX g
INK :
INX g
MVI L,4 ;CHAR COUNTER
CHAL MOV A,C $NEXT 4 BITS
ANI 2FH
CPI ZAH ;IS IT A-F?
JC CHA15 ;NO
ALI 7 1 YES
CHAlS ALI ‘Q° ; FGRM ASCII
MOV M,A i STORE THIS CHZARACTER
IcX H ;BACK UP THROUGH OUTPUT AREA w
MYI E,4 ;COUBLE RIGHT

ORA
CHAZ MOV
RAR
MoV
MoV
RAR
MOV
LCR
JNZ
DCR
INZ
POP
POP
POP
RET

CALL

*

*

*

*

*

% RETURN

%*

CHAB pUSH
PUSH
PUSH
INX

MVI
JMP

CALL

3 *

DSPLY CALL

LSPLY1 MOV
CALL
CPI
RZ
INX
JMP

iSHIFT 4 BITS

. w -
(@ N J e}

-
-~

;LECREMENT SHIFT COUNTER
ySTILL SHIFTING

y DECREMENT CHAKACTER COUNTER
ySTILL CONVERTING

yRESTORE REGISTERS

+ AND EXIT

mMowOooE O ol e
2o} =1
Lol >
[n

BINARY TO HEX ASCII CONVERSION, 8 BITS *

ALTRESS FOR 2 CHARACTER OUTPUT STRING
8 BIT BINARY DATA

it n

HL,LE,BC UNCHANGEL
A DESTROYED *

»SAVE REGISTERS

PRINT CHARACTER STRING *
HL = FIRST BYTE ADDRESS OF OQUTPUT STRING

(MUST ENT WITH ASCII CARRIAGE RETURN) *

CRLF
A,M
USROUT yOUTPUT THIS CHARACTER
CR yEND OFf STRING?
¢ YES, EXIT
H 7 NO, BUMP STRING POINTER
DSPLY1

GET KEYBOARL ENTRY OF HEX INTEGER *

*

* RETURN BL = 16 BIT BINARY DATA *

1490

P

AR

ENTR LXI d,00008

INITIALIZE CATA

CALL CRLF ;SENL CARRIAGE RETURN &
, i LINE FZED
MVI 4, SENLC A CUE MARK
CALL USEOUT
M7 I C,4 ;CHAR. COUNTER
ENTR1 CALL USRIN {GET 1 CHARACTER
CPI CR ;CARRIAGE RETURN?
RZ ;YES, EXIT
CPI LF sLINE FEEL?
RZ ;YES, EXIT
CPI ‘A’ ;IS IT 9-9°7
JC ENTR15 s YES
ANI gLFH iNO, FORCE LOWER CASE
ENTR15 DAD 3 ;SEIPT PREVIOUS DATA LEFT
LAL g i 4 BITS
TAT H
DAD "
JC ENTR3 :IF OVERFLOW, PRINT ‘7~
CPI ‘g’ ;1S IT @-F?
JC ENTR3 ; ILLEGAL CHARACTER
CPI ‘F+1
INC ENTR3 ;s ILLEGAL CHARACTER
CPI ‘A’ ;IS IT A-F?
JC ENTR2 iNO, IT’S @-90
ALl 9 {ALT FULGE FACTOR
ENTR2 ANI QFH ; ISOLATE 4 BITS
ORA L JMERGE WITH PREVIOUS LATA
MOV L,A
DCR c ;COUNT CHARACTERS
RZ JEXIT IF 4 RECEIVEL
JMP ENTR1 $GET ANCTHER CHARACTER
ENTR3 MVI AT? yPRINT QUESTION MARK
CALL USROUT
JMP ENTR ; ANL RESTART ENTRY

* PRINT CARRIAGE RETURN AND LINE FEED *

CRLF MVI A,CR
CALL USROUT
MVI A,LF
CALL USROUT
RET

* MISCELLANEOUS MESSAGES ANL LATA AREA *

MEMA DB ‘8080 MEMORY TEST - VERSION 2.5°,LF,CR
MEMB LB ‘ENTER ALLRESS OF FIRST MEMORY BYIE’
LB ‘70 TEST:’,CR

141

3
']
]
| MEMC DB ENTER ADDRESS OF LAST™ MEMORY BYTE”
LB ’ P70 TEST:’,CR
MEMD DB ADDRESS="
MEMI1 LB ‘4444 PATTERN='
MEMLZ2 TB ’$4 CONTENTS="
MEMD3 DB :22 XOR="
MEML4 IR , TIPE=
MEMLS LB ’ ,CR
MEME Dw) ; ERRORS THIS PASS
MEMF LW) ;PASS COUNT
MEMG LB 74$54-955% pPass:
MEMG1 DB ’2222 ERRORS: ’
MEMG2 LB ’ CUM. ERRORS: ’
MEMG23 LB f844%
MEMG25 DB CR, “AND: °
MEMGZ LB 74868 oR: ¢
MEMG4 B 7$%%%°,CR ;
MEMI DW 2 ;FIRST BYTE ADDRESS TO TEST
MEMJ LB 2FER ;BIT CROSSTALK PATTERN
MEMK LW -1 ;LOGICAL “ANI” OF FAILING
; ADDRESSES |,
MEML LW 4] ;LOGICAL ‘OR’° OF FAILING
i ALLRESSES
MEMM DB LF, ‘GOODBYE“,CR
MEMN I3 1=ITEMIZE SZRRORS, ’
LB “P=PRINT ERROR TOTAL ONLY, °
DB ‘E=EXIT TEST’,CEH
MEMP LB) ;FLAG 1=ITEMIZE, @=TOTAL
MEMT LB END OF PROGRAM USEL AS FIRST °
DB ADDRESS TO TEST = ° .
MEMT1 LB 755457 ,CR |
MEMU 3] ‘ERROR: LAST BYTE ALLRESS LESS ° i
DB ‘PHAN FIRST BYTE ADDRESS. ,Ch
MEMV LB LF
LB 00 ABORT TEST PUSH ANY KEY’ H
DB Ck
MEMX LW) ;CUMULATIVE ERROR COUNT
USRIN PUSH B ;GET INPUT FROM HOST CONSOLE
PUSH L
PUSH H
MV I c,1
CALL USRIO
POP H
POP D
POP B
RET

USRCUT PUSH
pPUSH

' SEND CHARACTER TO HOST
3 CONSOLE

o w

142

USRSTAT

BSoUT

STACK

PUSH
MVI
CALL
POP
POP
POP
RET

PUSH
PUSH
PUSH
MVI
CALL
POP
POP
popP
RET

MYI

CALL
RET

DS

WG aQig

momcoow

A,BKSPACE
JSROUT

64

sSEE IF CHARACTER IS WAITING

sPRINT A BACKSPACE

+SET UP FOR 32 LEVELS

AHOWIW SIW Ol ¥SIT - FTI4 XIH IVOINMOT °

NOISSIYAdNS NNIW ON {TOYINOD NI ISOH :SNIVLS WILSIS

NOIL¥D01
AIILI334dE WOYL ZHOWAW SAW ALAIAXT °N

JTOSNOD OL (S)NOILVIOT AYOWIW SIW dWNT °W

AYOWTW SIW NI FIONINDAS JIXE FLVIOT °1
qL19 gITA103dS BLIM XHOWIW saW TIId A
AMOWAW SIW 40 JIAS SNOANILNOD °f
(SINOILVDOT AUOWAW SIW JAS/ANINVYT 1
4T14 JSI1T XAH OL X¥OWIW SIW AV0Tdn °H
)

SANVWWOD SaW

ONILSIT ANIW TTdRYS

J XIAN3ddv

1SOH Ol 10HJINOD WILSAS NUNIIY °F
LOVHLEANS 9 TAV TVWIDATVIEH °J

ANIW ONILNI¥d SSI¥I4NS ION OQ °4€
ONIW DNIINTHUL SSIYAdNS °V

< NOILAO ONIW ININI

W/d2 01 N4N13IY °*J

SNOIJONYLISNI DISVE °D

SANVWWOD 1SOH

C ANNTLNOD OL AIX ANV SSTHd

TVANVW S,H3ISn 3AL LINSNOD *STIVIEA HAHI¥NNI HOL

“INAW THI 01

TANYALIY SI ¥ASH ABI NARL LNANI ONIHOT JIFYIINT ST KIX AdVIST AHL dI
“QIAvVI4dSIa 39

0L SIYWHOA LOANI THL ISAVI TTIA LdWOHd FTHL HALIV JAHAINT AYVW NOILSINO V
*IVONVW S, 43SN FBI JTASNOD ‘SNOIL4IOXA HOL °JUAB I14sn SI 111

S, HOHNVISIY TVIIOIA NI 4dSn SV LVWHOL O/1 VIVA AWVS 3RL *TVHEANID NI
*XVINXS TVOATTI INV °SHILIWITAL

m3d 001 MO ANVW 004 °*SIIDIT XAH TITVANI JYV HOYYI NOWWOD 30 SADUNOS
*SS3T Y0 OML LSYVT AHL ‘SINdNI VIVQd 304 ¢QIYIINT SUILOVHVAD Y3H

SSAT WO 4Ynod ILSVT IHL AAVL SAVAIV TTIIM WVUDONd AHL *SIAANI SSAHITV ¥Od
*W/dW INV W/dD NI SV SI INANI NO ONILIIT ANIT TVHHUON

*¥IIL INIT YO NYNIIY TOVINYVO V BLIM SININI FLVNIWHRL

"NOTLVEON XJH NI A9 OF J3LOAAXT JYV SILNINI VLVI INV SSTHTIIV

*dSVD JI3mOT YO HI4dN NI 3L AVW SININI TTV

* <, SI VIVa 40 INAN] HOJ LdWOWd IHI

$SNOTLINYLSNI SIWV JISVE

ONILSIT NOILONYLSNI JISVE ITdWVS

9 XIAN3IddV

1
°r
°1
‘H
*9
‘q
*3
°q
2
‘q
‘v

145

< AANTILNOD OL AAN XNV SSIUd

TII4 ¥04 3sShH OJ vivl X3Y SI1 ZZ
INTIMLTG TTI4 O SASSIUAAV AN
INVY LYVLS XAH SIW 48V XXXX 9 XXXX 22 X1XX XXXX< 1114

JIING SI NO1LdO FHI °1dWO¥d
FHL 434dY AIdRL SI ,°, ¥ KRINO AT
(SYLLIWITIT ONITATOND *XVW SATAING GGZ)

RYOWIA STW OINI AUINT HOJ VIVI XIH A4V **ct 00 44 v¥<
JONVHD LSHId

H04 SSAMIAV LUVLS XA SIW ST XXXX IXXX< SNOANTINOD
,*., SI 22 40
VIVa XaH MIN ST ZZ 4o
NANIAY AOVINNVO ST 22 *SSEHIIV LVHL LV
VI¥I X4H ST KK °*SSANIIV X4H SI XXXX 72 kX XXXX<
14S ONV ANIWVYE
0l SSAMIIV XAH SIW LSHIJ SI XKKX XAAXC STW ANTWVXE
m IV0TdN HOL SISSAHIIV INF
w ANV 1HYLS XEH SAW AUV KAKK 3 XXXX KRR XXXXC
. | (XAH* JAWINTTIIC avordn
W TINOILA0 ST (XAR*) (XHH*)IWVNITIA< T70TNAT
SHFOILNI XTH AUV AAKK 9 XIXX KRR XXXXC ALIEVYYH
(N-¥) NOILOATIS NOILdO SI X X< ANEW

¢! SMOTTIOE SV FYV SLVWHOS HIJAWVEVL INdNI

ONILSIT LYWIOJ ¥3ILIWVAVA LNINI JTJHVS

H XIAON3ddVY

146

t~
< INNTIINOD O AN ANV SSTU¥d <
NIDEL 0L SI
m NOTLADHXA HHAHA SSIHIIV XAR SIW SI XXXX XXXX< 14009 XT
| NIARLIT dWNA OL SISSTHIAV GNT TYNOILIO
INV LYVLS XAH SOW YHV KARK 9 XXXX (KEAE)XXXXZ dwna
“ XHOWIW SIW NI BOJ HOUVES 0%
TONANOAS X3 LAG 91 V Ol dn THV dd 4 V¢

i NIAMLAE HOHVIS O SASSAHIIV INI TVNOILIO
, INV LHVIS X3H SIW YV XXXX 9 XXXX (XX21)XXXAC °DAS WLIVIOT

BIBLIOGRAPHY

{
f Barden, William Jr., The 28¢ Microcomputer Handbook, Howard
‘ w. Sams S Co., Inc., 187S.

LIGITAL RESEARCH CORPORATION, CF/M and MP/M Users Manuals,
1c89.

PRO-LOG CORPORATION, 73C4 Lual Uart Card Users Manual, 1¢8@.

PRO-LOG CORPCORATION, 77@1 16K Static Memory Card Users
Manual, 198¢. .

PRO-LOG CORPOQRATION, 7803 Processor Card (Z8@0) Users Manual,
1684@.

PRO~-LOG CQRPORATION, Series 7@9d STL RUS Technical Manual
and Product Catalog; March 1981,

Titus, Jonathan 4. and others, The 808ZA Eugbook, 1lst ed.,
Howard W. Sams & Co., Inc., 1977.

Titus, Jonatnhan A. and others, BCEQG/EQES Software lesign -
Book 1, 1st ed., Howard W. Sams & Co., Inc., 1980.

Titus, Jonathan A. and others, 8038/87285 Software Lesign -
Beok 2, 1st ed., Howard . 5ams & Co., Inc., 187¢.

Titus, Jonathan A. and others, Interfacing and Sclentific
Lata Communications Experiments, 1st ed., Howard W. Sams &
Co., Inc., 1c84.

Zagg. Rodnay, dow to Program the 2382, 3rd ed., SYBEX Inc.,
187¢.

148

¢ INITIAL CISTRIBUTION LIST

No. Copiles

1. Tefense Technical Information Center 2
Cameron Station
Alexandria, Virginla 22314

2. Livrary, Code 9142 2
Naval Postgraduate School
Monterey, California $5394¢

3. Lepartment Chairman, Code &2 2
Cepartment of Electrical Engineering
Naval Postgraduate School
Monterey, California ©3540

4. Associate Professor M. L. Cotton, Code 82Co
Lepartment of Electrical Engineering
Naval Postgraduate School
Monterey, California 53942

[ab]

5. Professor R. Panholzer, Code 62Pz 1
Department of Electrical Engineering
Naval Postgraduate School
Monterey, California 53549

6. LT Stepben M. Eughes, USN 1
1416 Sir Rickard Road
Virginia Beach, Virginia 23455

149

